Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Ferran Cedó"'
Autor:
Ferran Cedó
Publikováno v:
Advances in Group Theory and Applications, Vol 5, Pp 33-90 (2018)
This is a survey on the theory of left braces, an algebraic structure introduced by Rump as a generalization of Jacobson radical rings to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation.
Externí odkaz:
https://doaj.org/article/85318b485c204fccb1725616465b0ff0
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
Given a set-theoretic solution $(X,r)$ of the Yang--Baxter equation, we denote by $M=M(X,r)$ the structure monoid and by $A=A(X,r)$, respectively $A'=A'(X,r)$, the left, respectively right, derived structure monoid of $(X,r)$. It is shown that there
Publikováno v:
Revista Matemática Complutense. 34:99-129
Given a finite non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation and a field $K$, the structure $K$-algebra of $(X,r)$ is $A=A(K,X,r)=K\langle X\mid xy=uv \mbox{ whenever }r(x,y)=(u,v)\rangle$. Note that $A=\oplus_{n\geq 0} A_
We introduce left and right series of left semi-braces. This allows to define left and right nilpotent left semi-braces. We study the structure of such semi-braces and generalize some results, known for skew left braces, to left semi-braces. We study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbe2389b0468a1d0e6cd058c2dc6fa02
https://hdl.handle.net/11587/476872
https://hdl.handle.net/11587/476872
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 62, Núm. 2 (2018); p. 641–649
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 62, no. 2 (2018), 641-649
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 62, Núm. 2 (2018); p. 641–649
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 62, no. 2 (2018), 641-649
We prove that a finite non-degenerate involutive set-theoretic solution (X,r) of the Yang-Baxter equation is a multipermutation solution if and only if its structure group G(X,r) admits a left ordering or equivalently it is poly-(infinite cyclic).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d12bba3ec814ecb88c952f6a5f29f6d4
http://hdl.handle.net/2072/429719
http://hdl.handle.net/2072/429719
Left braces, introduced by Rump, have turned out to provide an important tool in the study of set theoretic solutions of the quantum Yang-Baxter equation. In particular, they have allowed to construct several new families of solutions. A left brace $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::690298688c766db8210c15c0242418a3
Autor:
Jan Okniński, Ferran Cedó
Publikováno v:
Advances in Mathematics. 391:107968
We study involutive non-degenerate set-theoretic solutions ( X , r ) of the Yang-Baxter equation on a finite set X. The emphasis is on the case where ( X , r ) is indecomposable, so the associated permutation group G ( X , r ) acts transitively on X.
Publikováno v:
Journal of Algebra. 463:80-102
Given a left brace $G$, a method to construct all the involutive, non-degenerate set-theoretic solutions $(Y,s)$ of the YBE, such that $\mathcal{G}(Y,s)\cong G$ is given. This method depends entirely on the brace structure of $G$.
Comment: 18 pa
Comment: 18 pa
Braces were introduced by Rump to study involutive non-degenerate set-theoretic solutions of the Yang-Baxter equation. A constructive method for producing all such finite solutions from a description of all finite left braces has been recently discov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c930874af58ed53f49fd285c6c98282e
http://arxiv.org/abs/1807.06408
http://arxiv.org/abs/1807.06408
Publikováno v:
Cedo, F, Smoktunowicz, A & Vendramin, L 2019, ' Skew Left Braces of Nilpotent Type ', Proceedings of the London Mathematical Society, vol. 118, no. 6, pp. 1367-1392 . https://doi.org/10.1112/plms.12209
We study series of left ideals of skew left braces that are analogs of upper central series of groups. These concepts allow us to define left and right nilpotent skew left braces. Several results related to these concepts are proved and applications
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18c67c4a44d45845c5cf24f1129d092a