Zobrazeno 1 - 10
of 353
pro vyhledávání: '"Fernández-Córdoba"'
The $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-additive codes are subgroups of $\mathbb{Z}_2^{\alpha_1} \times \mathbb{Z}_4^{\alpha_2} \times \mathbb{Z}_8^{\alpha_3}$. A $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-linear Hadamard code is a Hadamard code which
Externí odkaz:
http://arxiv.org/abs/2401.14799
The Zps-additive codes of length n are subgroups of Zps^n , and can be seen as a generalization of linear codes over Z2, Z4, or more general over Z2s . In this paper, we show two methods for computing a parity-check matrix of a Zps-additive code from
Externí odkaz:
http://arxiv.org/abs/2401.05247
The $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-additive codes are subgroups of $\mathbb{Z}_2^{\alpha_1} \times \mathbb{Z}_4^{\alpha_2} \times \mathbb{Z}_8^{\alpha_3}$, and can be seen as linear codes over $\mathbb{Z}_2$ when $\alpha_2=\alpha_3=0$, $\math
Externí odkaz:
http://arxiv.org/abs/2301.09404
The $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-additive codes are subgroups of $\mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2} \times \cdots \times \mathbb{Z}_{p^s}^{\alpha_s}$, and can be seen as linear codes over $\mathbb{Z}_p$
Externí odkaz:
http://arxiv.org/abs/2207.14702
The $\Z_p\Z_{p^2}$-additive codes are subgroups of $\Z_p^{\alpha_1} \times \Z_{p^2}^{\alpha_2}$, and can be seen as linear codes over $\Z_p$ when $\alpha_2=0$, $\Z_{p^2}$-additive codes when $\alpha_1=0$, or $\Z_2\Z_4$-additive codes when $p=2$. A $\
Externí odkaz:
http://arxiv.org/abs/2203.15657
The $\Z_{p^s}$-additive codes of length $n$ are subgroups of $\Z_{p^s}^n$, and can be seen as a generalization of linear codes over $\Z_2$, $\Z_4$, or $\Z_{2^s}$ in general. A $\Z_{p^s}$-linear generalized Hadamard (GH) code is a GH code over $\Z_p$
Externí odkaz:
http://arxiv.org/abs/2203.15407
In this paper, we introduce $\mathbb{Z}_{p^r}\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive cyclic codes for $r\leq s$. These codes can be identified as $\mathbb{Z}_{p^s}[x]$-submodules of $\mathbb{Z}_{p^r}[x]/\langle x^{\alpha}-1\rangle \times \mathbb{Z
Externí odkaz:
http://arxiv.org/abs/2202.11454
The $\Z_{2^s}$-additive codes are subgroups of $\Z^n_{2^s}$, and can be seen as a generalization of linear codes over $\Z_2$ and $\Z_4$. A $\Z_{2^s}$-linear code is a binary code which is the Gray map image of a $\Z_{2^s}$-additive code. We consider
Externí odkaz:
http://arxiv.org/abs/1910.07911
Linear complementary dual codes were defined by Massey in 1992, and were used to give an optimum linear coding solution for the two user binary adder channel. In this paper, we define the analog of LCD codes over fields in the ambient space with mixe
Externí odkaz:
http://arxiv.org/abs/1903.07886
The $\mathbb{Z}_{2^s}$-additive codes are subgroups of $\mathbb{Z}^n_{2^s}$, and can be seen as a generalization of linear codes over $\mathbb{Z}_2$ and $\mathbb{Z}_4$. A $\mathbb{Z}_{2^s}$-linear Hadamard code is a binary Hadamard code which is the
Externí odkaz:
http://arxiv.org/abs/1801.05189