Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Ferme Jasmina"'
Autor:
Brešar Boštjan, Ferme Jasmina
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 2, Pp 569-589 (2022)
Given a graph G, a coloring c : V (G) → {1, …, k} such that c(u) = c(v) = i implies that vertices u and v are at distance greater than i, is called a packing coloring of G. The minimum number of colors in a packing coloring of G is called the pac
Externí odkaz:
https://doaj.org/article/17c9d3eb228840d0a6b1a095e153158e
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 40, Iss 4, Pp 923-970 (2020)
If S = (a1, a2, . . .) is a non-decreasing sequence of positive integers, then an S-packing coloring of a graph G is a partition of V (G) into sets X1, X2, . . . such that for each pair of distinct vertices in the set Xi, the distance between them is
Externí odkaz:
https://doaj.org/article/ec7137bc672148049061d0fa686f8520
For a non-decreasing sequence $S=(s_1,s_2,\ldots)$ of positive integers, a partition of the vertex set of a graph $G$ into subsets $X_1,\ldots, X_\ell$, such that vertices in $X_i$ are pairwise at distance greater than $s_i$ for every $i\in\{1,\ldots
Externí odkaz:
http://arxiv.org/abs/2405.18904
Publikováno v:
In Applied Mathematics and Computation 1 April 2025 490
Autor:
Ferme, Jasmina1 (AUTHOR) jasmina.ferme1@um.si, Štesl, Daša Mesarič2,3 (AUTHOR) Dasa.Stesl@fri.uni-lj.si
Publikováno v:
QM - Quaestiones Mathematicae. Sep2024, p1-17. 17p.
Autor:
Ferme, Jasmina
Given a graph $G$, a function $c:V(G)\longrightarrow \{1,\ldots,k\}$ with the property that $c(u)=c(v)=i$ implies that the distance between $u$ and $v$ is greater than $i$, is called a $k$-packing coloring of $G$. The smallest integer $k$ for which t
Externí odkaz:
http://arxiv.org/abs/2103.10871
Given a graph $G$ and a non-decreasing sequence $S=(a_1,a_2,\ldots)$ of positive integers, the mapping $f:V(G) \rightarrow \{1,\ldots,k\}$ is an $S$-packing $k$-coloring of $G$ if for any distinct vertices $u,v\in V(G)$ with $f(u)=f(v)=i$ the distanc
Externí odkaz:
http://arxiv.org/abs/2005.10491
The \textit{packing chromatic number} of a graph $G$, denoted by $% \chi_\rho(G)$, is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $V_i$, $i\in \{1,\ldots,k\}$, where each $V_i$ is an $i$-packing. In this pape
Externí odkaz:
http://arxiv.org/abs/2001.00469
Autor:
Brešar, Boštjan, Ferme, Jasmina
Given a graph $G$, a coloring $c:V(G)\longrightarrow \{1,\ldots,k\}$ such that $c(u)=c(v)=i$ implies that vertices $u$ and $v$ are at distance greater than $i$, is called a packing coloring of $G$. The minimum number of colors in a packing coloring o
Externí odkaz:
http://arxiv.org/abs/1904.10212
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.