Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Feng, Xinglong"'
Autor:
Ling, Weijia1 (AUTHOR), Feng, Xinglong2,3 (AUTHOR), Wang, Liguan2,4 (AUTHOR), Zhu, Zhonghua1,4 (AUTHOR) zhuzh2024@outlook.com, Wang, Shiwen3 (AUTHOR), Fu, Haiying1 (AUTHOR), Zhang, Shuwen1 (AUTHOR), Zhao, Ying1 (AUTHOR)
Publikováno v:
Scientific Reports. 10/20/2024, Vol. 14 Issue 1, p1-26. 26p.
Autor:
Feng, Xinglong1 (AUTHOR), Chen, Zeng2,3 (AUTHOR) zschenzeng@126.com, Li, Zhengrong1 (AUTHOR), Zeng, Qingtian1 (AUTHOR), Wang, Jing1 (AUTHOR), Wang, Ping2,3 (AUTHOR), Khandelwal, Manoj (AUTHOR)
Publikováno v:
Shock & Vibration. 9/20/2024, Vol. 2024, p1-12. 12p.
Publikováno v:
In Measurement 15 January 2025 239
Publikováno v:
In Engineering Applications of Artificial Intelligence December 2024 138 Part B
Publikováno v:
In Engineering Applications of Artificial Intelligence July 2024 133 Part F
Publikováno v:
In Ocean Engineering 1 June 2024 301
Publikováno v:
In Ocean Engineering 1 March 2024 295
Modern approaches for semantic segmention usually pay too much attention to the accuracy of the model, and therefore it is strongly recommended to introduce cumbersome backbones, which brings heavy computation burden and memory footprint. To alleviat
Externí odkaz:
http://arxiv.org/abs/1912.12888
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A large number of retinal vessel analysis methods based on image segmentation have emerged in recent years. However, existing methods depend on cumbersome backbones, such as VGG16 and ResNet-50, benefiting from their powerful feature extraction capab
Externí odkaz:
http://arxiv.org/abs/1911.09982