Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Fender, Elijah"'
We study the topological entropy of Reeb flows on contact manifolds with Liouville fillings. With the theory of persistence modules, we define SH-barcode entropy from the symplectic homology of a filling. We prove that the SH-barcode entropy is indep
Externí odkaz:
http://arxiv.org/abs/2305.04770
Autor:
Fender, Elijah
In this paper we prove two isomorphisms in the local symplectic homology of a simple, which is to say non iterated, isolated Reeb orbit. The isomorphisms are in $S^1$-equivariant and nonequivariant symplectic homology, relating the local Floer homolo
Externí odkaz:
http://arxiv.org/abs/2010.01438