Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Feltrin, Guglielmo"'
We provide a new version of the Poincar\'e-Birkhoff theorem for possibly multivalued successor maps associated with planar non-autonomous Hamiltonian systems. As an application, we prove the existence of periodic and subharmonic solutions of the scal
Externí odkaz:
http://arxiv.org/abs/2410.21045
In this paper, we study the $T$-periodic solutions of the parameter-dependent $\phi$-Laplacian equation \begin{equation*} (\phi(x'))'=F(\lambda,t,x,x'). \end{equation*} Based on the topological degree theory, we present some atypical bifurcation resu
Externí odkaz:
http://arxiv.org/abs/2406.00325
The paper studies the existence of periodic solutions of a perturbed relativistic Kepler problem of the type \begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = -\alpha\frac{x}{|x|^{3}} + \var
Externí odkaz:
http://arxiv.org/abs/2405.11189
In this paper, we focus our attention on the positive solutions to second-order nonlinear ordinary differential equations of the form $u''+q(t)g(u)=0$, where $q$ is a sign-changing weight and $g$ is a superlinear function. We exploit the classical sh
Externí odkaz:
http://arxiv.org/abs/2405.05664
We investigate bifurcation of closed orbits with a fixed energy level for a class of nearly integrable Hamiltonian systems with two degrees of freedom. More precisely, we make a joint use of Moser invariant curve theorem and Poincar\'e-Birkhoff fixed
Externí odkaz:
http://arxiv.org/abs/2310.02615
Autor:
Feltrin, Guglielmo, Garrione, Maurizio
We deal with the non-autonomous parameter-dependent second-order differential equation \begin{equation*} \delta \left( \dfrac{v'}{\sqrt{1-(v')^{2}}} \right)' + q(t) f(v)= 0, \quad t\in\mathbb{R}, \end{equation*} driven by a Minkowski-curvature operat
Externí odkaz:
http://arxiv.org/abs/2309.13286
We consider two different relativistic versions of the Kepler problem in the plane: the first one involves the relativistic differential operator, the second one involves a correction for the usual gravitational potential due to Levi-Civita. When a s
Externí odkaz:
http://arxiv.org/abs/2303.00336
We deal with a planar differential system of the form \begin{equation*} \begin{cases} \, u' = h(t,v), \\ \, v' = - \lambda a(t) g(u), \end{cases} \end{equation*} where $h$ is $T$-periodic in the first variable and strictly increasing in the second va
Externí odkaz:
http://arxiv.org/abs/2211.06070
Autor:
Feltrin, Guglielmo, Zanolin, Fabio
We show the direct applicability of the Brouwer fixed point theorem for the existence of equilibrium points and periodic solutions for differential systems on general domains satisfying geometric conditions at the boundary. We develop a general appro
Externí odkaz:
http://arxiv.org/abs/2203.00950