Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Fels, Maximilian"'
This is the first in a series of two works which study the discrete Gaussian free field on the binary tree when all leaves are conditioned to be positive. In this work, we obtain sharp asymptotics for the probability of this "hard-wall constraint" ev
Externí odkaz:
http://arxiv.org/abs/2409.00541
This is the second in a series of two works which study the discrete Gaussian free field on the binary tree when all leaves are conditioned to be positive. In the first work ("Gaussian free field on the tree subject to a hard wall I: Bounds") we iden
Externí odkaz:
http://arxiv.org/abs/2409.00422
We identify the fluctuations of the partition function of the continuous random energy model on a Galton-Watson tree in the so-called weak correlation regime. Namely, when the ``speed functions'', that describe the time-inhomogeneous variance, lie st
Externí odkaz:
http://arxiv.org/abs/2304.03574
Autor:
Fels, Maximilian, Hartung, Lisa
We prove convergence of the full extremal process of the two-dimensional scale-inhomogeneous discrete Gaussian free field in the weak correlation regime. The scale-inhomogeneous discrete Gaussian free field is obtained from the 2d discrete Gaussian f
Externí odkaz:
http://arxiv.org/abs/2002.00925
Autor:
Fels, Maximilian, Hartung, Lisa
We continue the study of the maximum of the scale-inhomogeneous discrete Gaussian free field in dimension two. In this paper, we consider the regime of weak correlations and prove the convergence in law of the centred maximum to a randomly shifted Gu
Externí odkaz:
http://arxiv.org/abs/1912.13184
Autor:
Fels, Maximilian
This is the first of a three paper series in which we present a comprehensive study of the extreme value theory of the scale-inhomogeneous discrete Gaussian free field. This model was introduced by Arguin and Ouimet who computed the first order of th
Externí odkaz:
http://arxiv.org/abs/1910.09915
Autor:
Fels, Maximilian1 fels@iam.uni-bonn.de, Hartung, Lisa2 lhartung@uni-mainz.de
Publikováno v:
ALEA. Latin American Journal of Probability & Mathematical Statistics. 2021, Vol. 18, p1891-1930. 40p.
Autor:
Fels, Maximilian1 fels@iam.uni-bonn.de, Hartung, Lisa2 lhartung@uni-mainz.de
Publikováno v:
ALEA. Latin American Journal of Probability & Mathematical Statistics. 2021, Vol. 18, p1689-1718. 30p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.