Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Felipe Zaldívar"'
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 27
We show that for every linear section of a Grassmannian over a finite field $${{\mathbb {F}}}_q$$ , in addition to the evaluation code associated to the $${{\mathbb {F}}}_q$$ -rational points of the section, there exists a parity check code. Instance
Autor:
Felipe Zaldívar
En esta introducción al álgebra, el autor parte de ideas sencillas de lógica y de la notación e ideas básicas de la teoría de conjuntos, para después estudiar relaciones y funciones, conceptos fundamentales en matemáticas. Finalmente, usando
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 25:747-758
We obtain descriptions of the Lagrangian–Grassmannian code (Carrillo-Pacheco and Zaldivar in Des Codes Cryptogr 60:291–268, 2011) as a linear code associated with an FFN(1, q)-projective variety (Carrillo-Pacheco and Zaldivar in Adv Math Commun 1
Publikováno v:
Advances in Mathematics of Communications. 10:209-220
For projective varieties defined over a finite field ${\mathbb F}_q$ we show that they contain a unique subvariety that satisfies the Finite Field Nullstellensatz property [1,2], for homogeneous linear polynomials over ${\mathbb F}_q$. Using these su
Publikováno v:
Advances in Applied Clifford Algebras. 25:321-335
An alternate time-space framework is proposed by means of a hyperbolic scator algebraic formalism where the deformed Lorentz transformations are an immediate consequence of the formal properties of the algebra. We survey the group properties of the h
Publikováno v:
Advances in Applied Clifford Algebras. 24:661-674
The multiplicative or polar representation of hyperbolic scator algebra in 1 + n dimensions is introduced. The transformations between additive and multiplicative representations are presented. The addition and product operations are consistently def
Publikováno v:
Advances in Applied Clifford Algebras. 23:825-835
In this paper we extend the results of hyperbolic scator algebra introduced in [5], to consider an elliptic product in a subset of \({\mathbb{R}^{1 + n}}\) which recovers the field of complex numbers when only one director component is present. The p
Publikováno v:
Advances in Applied Clifford Algebras. 23:639-656
We introduce a non distributive algebra over the reals in 1 + 2 dimensions that contains the hyperbolic complex algebra \({\mathbb{H}_2}\). The algebra has divisors of zero that can be avoided by introducing the necessary conditions. Under these cond
Publikováno v:
American Journal of Physics. 79:1060-1063
We show that any group-theoretic differentiable operation in an open interval of real numbers is isomorphic to the usual addition of real numbers. Given the composition law, it is possible to establish the transformation relation. Alternatively, give
Publikováno v:
Designs, Codes and Cryptography. 60:291-298
Using the Lagrangian---Grassmannian, a smooth algebraic variety of dimension n(n + 1)/2 that parametrizes isotropic subspaces of dimension n in a symplectic vector space of dimension 2n, we construct a new class of linear codes generated by this vari