Zobrazeno 1 - 10
of 184
pro vyhledávání: '"Felipe M. G. França"'
Autor:
Zachary Susskind, Aman Arora, Alan T. L. Bacellar, Diego L. C. Dutra, Igor D. S. Miranda, Mauricio Breternitz, Priscila M. V. Lima, Felipe M. G. França, Lizy K. John
Publikováno v:
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
Autor:
Zachary Susskind, Aman Arora, Igor D. S. Miranda, Luis A. Q. Villon, Rafael F. Katopodis, Leandro S. de Araújo, Diego L. C. Dutra, Priscila M. V. Lima, Felipe M. G. França, Mauricio Breternitz, Lizy K. John
Publikováno v:
Proceedings of the International Conference on Parallel Architectures and Compilation Techniques.
Autor:
Victor C. Ferreira, Vinay C. Patil, Felipe M. G. França, Brunno F. Goldstein, Sandip Kundu, Alexandre S. Nery
Publikováno v:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 11:267-277
Training accurate deep learning (DL) models require large amounts of training data, significant work in labeling the data, considerable computing resources, and substantial domain expertise. In short, they are expensive to develop. Hence, protecting
Publikováno v:
IEEE Transactions on Emerging Topics in Computing. 9:44-54
Dynamic dataflow scheduling enables effective exploitation of concurrency while making parallel programming easier. To this end, analyzing the inherent degree of concurrency available in dataflow graphs is an important task, since it may aid compiler
Autor:
Luidi Simonetti, Carlos E. Marciano, Luerbio Faria, Felipe M. G. França, Gladstone M. Arantes, Abilio Lucena
Publikováno v:
Networks. 77:520-537
Autor:
Daniel Sadoc Menasche, Priscila M. V. Lima, Letícia Dias Verona, Fabricio Firmino, Felipe M. G. França, Sandip Kundu, Wouter Caarls, Leandro Santiago, Fabio Rangel, Mauricio Breternitz
Publikováno v:
Neurocomputing. 416:292-304
Weightless Neural Networks (WNNs) are Artificial Neural Networks based on RAM memory broadly explored as solution for pattern recognition applications. Memory-oriented solutions for pattern recognition are typically very simple, and can be easily imp
Autor:
Priscila M. V. Lima, Gabriel P. Guarisa, Aluizio Lima Filho, Lucca M. Felix, Luiz Felipe Ramalho de Oliveira, Felipe M. G. França, Leopoldo Lusquino Filho
Publikováno v:
Neurocomputing. 416:280-291
This paper explores two new weightless neural network models, Regression WiSARD and ClusRegression WiSARD, in the challenging task of predicting the total palm oil production of a set of 28 (twenty eight) differently located sites under different cli
Autor:
Priscila M. V. Lima, Siavash Rezaei, Brunno F. Goldstein, Hossein Bobarshad, Jaeyoung Do, Mahdi Torabzadehkashi, Min Soo Kim, Diego Fonseca Pereira de Souza, Felipe M. G. França, Leandro Santiago, Victor C. Ferreira, Vladimir Alves, Ali Heydarigorji
Publikováno v:
ACM Transactions on Storage. 16:1-37
The growing volume of data produced continuously in the Cloud and at the Edge poses significant challenges for large-scale AI applications to extract and learn useful information from the data in a timely and efficient way. The goal of this article i
Autor:
Luis F. M. de Moraes, Fabio H. Silva, Egberto A. R. de Oliveira, José Ferreira de Rezende, Rui R. Mello, Felipe M. G. França, Evandro L. C. Macedo, Flavia C. Delicato
Publikováno v:
Journal of Communications and Networks. 21:444-457
Internet of Things (IoT) has gained increasing visibility among emerging technologies and undoubtedly changing our daily life. Its adoption is strengthened by the growth of connected devices (things) as shown in recent statistics. However, as the num
Publikováno v:
Neural Computation. 31:176-207
The Wilkie, Stonham, and Aleksander recognition device (WiSARD) [Formula: see text]-tuple classifier is a multiclass weightless neural network capable of learning a given pattern in a single step. Its architecture is determined by the number of class