Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Fedor Pakhomov"'
Autor:
Fedor Pakhomov, James Walsh
Publikováno v:
Journal of Mathematical Logic.
We fix a gap in a proof in our paper Reducing[Formula: see text]-model reflection to iterated syntactic reflection.
Autor:
Fedor Pakhomov, James Walsh
Publikováno v:
Walsh, James; & Pakhomov, Fedor. (2018). Reflection ranks and ordinal analysis. UC Berkeley: Group in Logic and the Methodology of Science. Retrieved from: http://www.escholarship.org/uc/item/1159j6ck
JOURNAL OF SYMBOLIC LOGIC
JOURNAL OF SYMBOLIC LOGIC
It is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orde
Autor:
David FernÁndez-Duque, Joost J Joosten, Fedor Pakhomov, Konstantinos Papafilippou, Andreas Weierman
Japaridze's provability logic $GLP$ has one modality $[n]$ for each natural number and has been used by Beklemishev for a proof theoretic analysis of Peano aritmetic $(PA)$ and related theories. Among other benefits, this analysis yields the so-calle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa50cb1ad46d4d391d126744c327522c
Autor:
James Walsh, Fedor Pakhomov
In mathematical logic there are two seemingly distinct kinds of principles called "reflection principles." Semantic reflection principles assert that if a formula holds in the whole universe, then it holds in a set-sized model. Syntactic reflection p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f80e414b2fda6a14406b2fc77ce24c0
Autor:
Alexander Zapryagaev, Fedor Pakhomov
Presburger Arithmetic is the true theory of natural numbers with addition. We study interpretations of Presburger Arithmetic in itself. The main result of this paper is that all self-interpretations are definably isomorphic to the trivial one. Here w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::391a7059c402a5299475221c6150456e
http://arxiv.org/abs/2004.03404
http://arxiv.org/abs/2004.03404
Autor:
Ali Enayat, Fedor Pakhomov
Publikováno v:
ARCHIVE FOR MATHEMATICAL LOGIC
By a well-known result of Kotlarski, Krajewski, and Lachlan (1981), first-order Peano arithmetic $PA$ can be conservatively extended to the theory $CT^{-}[PA]$ of a truth predicate satisfying compositional axioms, i.e., axioms stating that the truth
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27dfb64c57d1116591c68787049a5d1b
https://hdl.handle.net/1854/LU-8735654
https://hdl.handle.net/1854/LU-8735654
We show that the decision problem for the basic system of interpretability logic IL is PSPACE-complete. For this purpose we present an algorithm which uses polynomial space with respect to the complexity of a given formula. The existence of such algo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a31f82ce74dea096b1c77eab8d9cc0f
https://www.bib.irb.hr/983020
https://www.bib.irb.hr/983020
Autor:
Alexander Zapryagaev, Fedor Pakhomov
Publikováno v:
Logical Foundations of Computer Science ISBN: 9783319720555
LFCS
LFCS
Presburger arithmetic \(\mathop {\mathbf {PrA}}\nolimits \) is the true theory of natural numbers with addition. We study interpretations of \(\mathop {\mathbf {PrA}}\nolimits \) in itself. We prove that all one-dimensional self-interpretations are d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1adac23bf5b696db66601aac56efe8c1
https://doi.org/10.1007/978-3-319-72056-2_22
https://doi.org/10.1007/978-3-319-72056-2_22
Autor:
Fedor Pakhomov
Publikováno v:
Logic, Language, Information, and Computation ISBN: 9783662553855
WoLLIC
WoLLIC
In this paper we present a new proof of Solovay’s theorem on arithmetical completeness of Godel-Lob provability logic \(\mathsf {GL}\). Originally, completeness of \(\mathsf {GL}\) with respect to interpretation of \(\Box \) as provability in \(\ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9a6ecaf1e9941ef6c9737d19c693b239
https://doi.org/10.1007/978-3-662-55386-2_20
https://doi.org/10.1007/978-3-662-55386-2_20
Autor:
Fedor Pakhomov
Publikováno v:
Archive for Mathematical Logic. 53:949-967
We consider the well-known provability logic GLP. We prove that the GLP-provability problem for polymodal formulas without variables is PSPACE-complete. For a number n, let $${L^{n}_0}$$ L 0 n denote the class of all polymodal variable-free formulas