Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Feaver, Amy"'
In this paper, we investigate the size function $h^0$ for number fields. This size function is analogous to the dimension of the Riemann-Roch spaces of divisors on an algebraic curve. Van der Geer and Schoof conjectured that $h^0$ attains its maximum
Externí odkaz:
http://arxiv.org/abs/2302.05987
Autor:
Feaver, Amy, Puskas, Anna
This paper gives a method to find all imaginary multiquadratic fields of class number dividing $2^{m},$ provided the list of all imaginary quadratic fields of class number dividing $2^{m+1}$ is known. We give a bound on the degree of such fields. As
Externí odkaz:
http://arxiv.org/abs/1712.06769
Autor:
Feaver, Amy
In this paper, we present a complete classification of all imaginary $n$-quadratic fields of class number 1.
Externí odkaz:
http://arxiv.org/abs/1608.04419
We study the Mahler measure of the three-variable Laurent polynomial x + 1/x + y + 1/y + z + 1/z - k where k is a parameter. The zeros of this polynomial define (after desingularization) a family of K3-surfaces. In favorable cases, the K3-surface has
Externí odkaz:
http://arxiv.org/abs/1208.6240
Autor:
Feaver, Amy
Publikováno v:
In Journal of Number Theory May 2017 174:93-117
Publikováno v:
Directions in Number Theory; 2016, p245-270, 26p