Zobrazeno 1 - 10
of 1 902
pro vyhledávání: '"Fayad, Zahi A"'
Autor:
Hirten, Robert P, Danieletto, Matteo, Tomalin, Lewis, Choi, Katie Hyewon, Zweig, Micol, Golden, Eddye, Kaur, Sparshdeep, Helmus, Drew, Biello, Anthony, Pyzik, Renata, Charney, Alexander, Miotto, Riccardo, Glicksberg, Benjamin S, Levin, Matthew, Nabeel, Ismail, Aberg, Judith, Reich, David, Charney, Dennis, Bottinger, Erwin P, Keefer, Laurie, Suarez-Farinas, Mayte, Nadkarni, Girish N, Fayad, Zahi A
Publikováno v:
Journal of Medical Internet Research, Vol 23, Iss 2, p e26107 (2021)
BackgroundChanges in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. ObjectiveWe performed an evaluation of HRV collected by a w
Externí odkaz:
https://doaj.org/article/d7e0647c8f7b41488bc32f8da0f9db33
Autor:
Vaid, Akhil, Jaladanki, Suraj K, Xu, Jie, Teng, Shelly, Kumar, Arvind, Lee, Samuel, Somani, Sulaiman, Paranjpe, Ishan, De Freitas, Jessica K, Wanyan, Tingyi, Johnson, Kipp W, Bicak, Mesude, Klang, Eyal, Kwon, Young Joon, Costa, Anthony, Zhao, Shan, Miotto, Riccardo, Charney, Alexander W, Böttinger, Erwin, Fayad, Zahi A, Nadkarni, Girish N, Wang, Fei, Glicksberg, Benjamin S
Publikováno v:
JMIR Medical Informatics, Vol 9, Iss 1, p e24207 (2021)
BackgroundMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. Ob
Externí odkaz:
https://doaj.org/article/11f1e0ca04304420af2f5d46261fc8ee
Autor:
Vaid, Akhil, Somani, Sulaiman, Russak, Adam J, De Freitas, Jessica K, Chaudhry, Fayzan F, Paranjpe, Ishan, Johnson, Kipp W, Lee, Samuel J, Miotto, Riccardo, Richter, Felix, Zhao, Shan, Beckmann, Noam D, Naik, Nidhi, Kia, Arash, Timsina, Prem, Lala, Anuradha, Paranjpe, Manish, Golden, Eddye, Danieletto, Matteo, Singh, Manbir, Meyer, Dara, O'Reilly, Paul F, Huckins, Laura, Kovatch, Patricia, Finkelstein, Joseph, Freeman, Robert M., Argulian, Edgar, Kasarskis, Andrew, Percha, Bethany, Aberg, Judith A, Bagiella, Emilia, Horowitz, Carol R, Murphy, Barbara, Nestler, Eric J, Schadt, Eric E, Cho, Judy H, Cordon-Cardo, Carlos, Fuster, Valentin, Charney, Dennis S, Reich, David L, Bottinger, Erwin P, Levin, Matthew A, Narula, Jagat, Fayad, Zahi A, Just, Allan C, Charney, Alexander W, Nadkarni, Girish N, Glicksberg, Benjamin S
Publikováno v:
Journal of Medical Internet Research, Vol 22, Iss 11, p e24018 (2020)
BackgroundCOVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, ef
Externí odkaz:
https://doaj.org/article/d26bd88c400844cfbae830c0f468bbfa
Autor:
Liu, Zelong, Tieu, Andrew, Patel, Nikhil, Zhou, Alexander, Soultanidis, George, Fayad, Zahi A., Deyer, Timothy, Mei, Xueyan
Artificial Intelligence (AI) has the potential to revolutionize diagnosis and segmentation in medical imaging. However, development and clinical implementation face multiple challenges including limited data availability, lack of generalizability, an
Externí odkaz:
http://arxiv.org/abs/2402.01034
Autor:
Zhou, Alexander, Liu, Zelong, Tieu, Andrew, Patel, Nikhil, Sun, Sean, Yang, Anthony, Choi, Peter, Fauveau, Valentin, Soultanidis, George, Huang, Mingqian, Doshi, Amish, Fayad, Zahi A., Deyer, Timothy, Mei, Xueyan
Purpose To develop a deep learning model for multi-anatomy and many-class segmentation of diverse anatomic structures on MRI imaging. Materials and Methods In this retrospective study, two datasets were curated and annotated for model development and
Externí odkaz:
http://arxiv.org/abs/2402.01031
Autor:
Liu, Zelong, Zhou, Alexander, Yang, Arnold, Yilmaz, Alara, Yoo, Maxwell, Sullivan, Mikey, Zhang, Catherine, Grant, James, Li, Daiqing, Fayad, Zahi A., Huver, Sean, Deyer, Timothy, Mei, Xueyan
Deep learning in medical imaging often requires large-scale, high-quality data or initiation with suitably pre-trained weights. However, medical datasets are limited by data availability, domain-specific knowledge, and privacy concerns, and the creat
Externí odkaz:
http://arxiv.org/abs/2312.05953
Autor:
Jonkman, Inge, Jacobs, Maaike M.E., Negishi, Yutaka, Yanginlar, Cansu, Martens, Joost H.A., Baltissen, Marijke, Vermeulen, Michiel, van den Hoogen, Martijn W.F., Baas, Marije, van der Vlag, Johan, Fayad, Zahi A., Teunissen, Abraham J.P., Madsen, Joren C., Ochando, Jordi, Joosten, Leo A.B., Netea, Mihai G., Mulder, Willem J.M., Mhlanga, Musa M., Hilbrands, Luuk B., Rother, Nils, Duivenvoorden, Raphaël
Publikováno v:
In American Journal of Transplantation November 2024 24(11):2022-2033
Autor:
Pandis, Dimosthenis, David, Navindra, El-Eshmawi, Ahmed, Miller, Marc A., Boateng, Percy, Costa, Ana Claudia, Robson, Philip, Trivieri, Maria Giovanna, Fayad, Zahi, Anyanwu, Anelechi C., Adams, David H.
Publikováno v:
In JTCVS Open June 2024 19:94-113
Autor:
Trivieri, Maria Giovanna, Robson, Philip M., Vergani, Vittoria, LaRocca, Gina, Romero-Daza, Angelica M., Abgral, Ronan, Devesa, Ana, Azoulay, Levi-Dan, Karakatsanis, Nicolas A., Parikh, Aditya, Panagiota, Christia, Palmisano, Anna, DePalo, Louis, Chang, Helena L., Rothstein, Joseph H., Fayad, Rima A., Miller, Marc A., Fuster, Valentin, Narula, Jagat, Dweck, Marc R., Morgenthau, Adam, Jacobi, Adam, Padilla, Maria, Kovacic, Jason C., Fayad, Zahi A.
Publikováno v:
In JACC: Cardiovascular Imaging April 2024 17(4):411-424
Autor:
Devesa, Ana, Rashed, Eman, Moss, Noah, Robson, Philip M., Pyzik, Renata, Roldan, Julie, Taimur, Sarah, Rana, Meenakshi M., Ashley, Kimberly, Young, Anna, Patel, Gopi, Mahmood, Kiran, Mitter, Sumeet S., Lala, Anuradha, Barghash, Maya, Fox, Arieh, Correa, Ashish, Pirlamarla, Preethi, Contreras, Johanna, Parikh, Aditya, Mancini, Donna, Jacobi, Adam, Ghesani, Nasrin, Gavane, Somali C., Ghesani, Munir, Itagaki, Shinobu, Anyanwu, Anelechi, Fayad, Zahi A., Trivieri, Maria Giovanna
Publikováno v:
In Journal of Heart and Lung Transplantation April 2024 43(4):529-538