Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Faustino Sánchez-Garduño"'
Publikováno v:
The Scientific World Journal, Vol 2016 (2016)
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0)=0) and advection-degenerate (at h′(0)=0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function
Externí odkaz:
https://doaj.org/article/9f5e081bccb04029ba736fbf8e1cb41c
Publikováno v:
Royal Society Open Science, Vol 1, Iss 2 (2014)
Predator–prey relationships are one of the most studied interactions in population ecology. However, little attention has been paid to the possibility of role exchange between species, despite firm field evidence of such phenomena in nature. In thi
Externí odkaz:
https://doaj.org/article/3cb75bf301c84093b216343423361f57
Publikováno v:
Lobachevskii Journal of Mathematics. 43:141-161
Publikováno v:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 477
In this paper, we carry out a travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion. We consider two types of invasive fronts of tumour tissue into extracellular matrix (ECM), which represents healthy tissu
Publikováno v:
Nonlinear Analysis: Real World Applications. 48:212-231
This paper deals with the existence of a limit cycle in a nonlinear ODE mathematical model which describes the interaction between three homogeneous populations. These take the form of pollinators, plants and herbivores. The interaction between the p
Publikováno v:
INTER DISCIPLINA. 8:11
La alometría es el estudio de la variación de las dimensiones anatómicas y fisiológicas en los seres vivos en tanto se correlacionan; esto permite aproximarse a la comprensión de los organismos como un todo y no como la suma de sus partes. A par
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 20:147-170
In this paper, we derive and analyze both analytically and numerically a mathematical model for three interacting populations. These take the form of a herbivore, a plant, and a pollinator. The full model is a nonlinear reaction–diffusion–advecti
Publikováno v:
Bulletin of Mathematical Biology. 73:1118-1153
This paper deals with the spatio-temporal dynamics of a pollinator-plant-herbivore mathematical model. The full model consists of three nonlinear reaction-diffusion-advection equations defined on a rectangular region. In view of analyzing the full mo
Publikováno v:
SAHUARUS. REVISTA ELECTRÓNICA DE MATEMÁTICAS. ISSN: 2448-5365. 1
En este ensayo se describen algunas regularidades morfológicas que existen en la arquitectura de las plantas. Con el propósito de emprender su modelación matemática, se estudian sus regularidades geométricas basadas en la sucesión de Fibonacci
Publikováno v:
Journal of Dynamics and Differential Equations. 16:1093-1121
Based on first principles, we derive a general model to describe the spatio-temporal dynamics of two morphogens. The diffusive part of the model incorporates the dynamics, growth and curvature of one- and two-dimensional domains embedded in 3. Our ge