Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Fatih Vehbi Celebi"'
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Abstract Analyses of complex behaviors of Cerebrospinal Fluid (CSF) have become increasingly important in diseases diagnosis. The changes of the phase-contrast magnetic resonance imaging (PC-MRI) signal formed by the velocity of flowing CSF are repre
Externí odkaz:
https://doaj.org/article/b86e46db6c4241a19db32dff8c448f01
Autor:
Adil Aslam Mir, Fatih Vehbi Celebi, Muhammad Rafique, Lal Hussain, Ahmed S. Almasoud, Masoud Alajmi, Fahd N. Al-Wesabi, Anwer Mustafa Hilal
Publikováno v:
IEEE Access, Vol 10, Pp 20590-20601 (2022)
This article primarily focuses on the performance evaluation of a new methodology, imputation by feature importance (IBFI), to serve its imputed dataset in further regression scenarios when dealing with soil radon gas concentration (SRGC) time-series
Externí odkaz:
https://doaj.org/article/d09adc7d0b5d4494a68e36aa1a9bd140
Autor:
Adil Aslam Mir, Fatih Vehbi Celebi, Hadeel Alsolai, Shahzad Ahmad Qureshi, Muhammad Rafique, Jaber S. Alzahrani, Hany Mahgoub, Manar Ahmed Hamza
Publikováno v:
IEEE Access, Vol 10, Pp 37984-37999 (2022)
The ability to predict the radioactive soil radon gas concentration is important for human beings because it serves as a precursor to earthquakes. Several studies have been conducted across the globe to confirm the correlation of radon emission dynam
Externí odkaz:
https://doaj.org/article/ef8b2d12cff0409e83f3b399f6036634
Publikováno v:
2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA).
Publikováno v:
Engineering Science and Technology, an International Journal, Vol 56, Iss , Pp 101762- (2024)
Conducting thorough research, analysis, and detection of cyber-threatening malware with the right parameters is crucial for safeguarding a country’s security and economy. Increasingly sophisticated cyber-attacks directly affect individual welfare,
Externí odkaz:
https://doaj.org/article/439fec232e344a3bb35ff2d65731f370
Publikováno v:
PLoS ONE, Vol 17, Iss 1, p e0262131 (2022)
A new methodology, imputation by feature importance (IBFI), is studied that can be applied to any machine learning method to efficiently fill in any missing or irregularly sampled data. It applies to data missing completely at random (MCAR), missing
Externí odkaz:
https://doaj.org/article/feb4b0bbeedf4d3a9d625b68ed58dda4