Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Fasquel, Justine"'
We introduce the partial reductions and inverse Hamiltonian reductions between affine $\mathcal{W}$-algebras along the closure relations of associated nilpotent orbits in the case of $\mathfrak{sl}_4$, fulfilling all the missing constructions in the
Externí odkaz:
http://arxiv.org/abs/2408.13785
We use the newly developed technique of inverse quantum hamiltonian reduction to investigate the representation theory of the simple affine vertex algebra $\mathsf{A}_{2}(\mathsf{u},2)$ associated to $\mathfrak{sl}_{3}$ at level $\mathsf{k} = -3+\fra
Externí odkaz:
http://arxiv.org/abs/2406.10646
We formulate and prove examples of a conjecture which describes the W-algebras in type A as successive quantum Hamiltonian reductions of affine vertex algebras associated with several hook-type nilpotent orbits. This implies that the affine coset sub
Externí odkaz:
http://arxiv.org/abs/2403.08212
We study the representations of the simple affine vertex algebras at non-admissible level arising from rank one 4D SCFTs. In particular, we classify the irreducible highest weight modules of $L_{-2}(G_2)$ and $L_{-2}(B_3)$. It is known by the works o
Externí odkaz:
http://arxiv.org/abs/2403.04472
Autor:
Fasquel, Justine, Nakatsuka, Shigenori
We study the representation theory of the subregular W-algebra $\mathcal{W}^k(\mathfrak{so}_{2n+1},f_{sub})$ of type B and the principal W-superalgebra $\mathcal{W}^\ell(\mathfrak{osp}_{2|2n})$, which are related by an orthosymplectic analogue of Fei
Externí odkaz:
http://arxiv.org/abs/2307.14574
Autor:
Fasquel, Justine
In this short note, we provide OPEs for several affine W-algebras associated with Lie algebras of rank two and give some direct applications.
Comment: 14 pages ; correction of a few typos, completion of OPEs for principal W-algebra of type B2
Comment: 14 pages ; correction of a few typos, completion of OPEs for principal W-algebra of type B2
Externí odkaz:
http://arxiv.org/abs/2210.15728
Autor:
Fasquel, Justine
Publikováno v:
Commun. Math. Phys. 390, 2022, pages 33-65
We prove the rationality of the exceptional W-algebras associated with the simple Lie algebra $\mathfrak{sp}_4$ and subregular nilpotent elements, proving a new particular case of a conjecture of Kac-Wakimoto. Moreover, we describe the simple $\mathc
Externí odkaz:
http://arxiv.org/abs/2009.09513
Autor:
Fasquel, Justine1 (AUTHOR) justine.fasquel@univ-lille.fr
Publikováno v:
Communications in Mathematical Physics. Feb2022, Vol. 390 Issue 1, p33-65. 33p.
Autor:
Fasquel, Justine
Publikováno v:
Algebraic Topology [math.AT]. Université de Lille, 2022. English. ⟨NNT : 2022ULILB013⟩
Affine W-algebras form a rich one-parameter family of vertex algebras associated with nilpotent elements of simple Lie algebras. These complex algebraic structures appear in several areas of physic and mathematics. Because of their recent constructio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9191cd7e13d1cd0d802cea255f2fee0c
https://theses.hal.science/tel-03945923/file/These_FASQUEL_Justine.pdf
https://theses.hal.science/tel-03945923/file/These_FASQUEL_Justine.pdf