Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Fashun Gao"'
Autor:
Zifei Shen, Fashun Gao
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We study existence of solutions for the fractional Laplacian equation -Δsu+Vxu=u2*s-2u+fx, u in ℝN, u∈Hs(RN), with critical exponent 2*s=2N/(N-2s), N>2s, s∈0, 1, where Vx≥0 has a potential well and f:ℝN×ℝ→ℝ is a lower order perturba
Externí odkaz:
https://doaj.org/article/ff2e3df3e2a448f4825e2e7c56bcdf31
Autor:
Zifei Shen, Fashun Gao
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
Externí odkaz:
https://doaj.org/article/12725be0a2274aa1879747c2ab8e5826
Publikováno v:
Mathematische Zeitschrift. 301:2185-2225
Autor:
Fashun Gao, Minbo Yang
Publikováno v:
Advances in Nonlinear Analysis. 11:1085-1096
In this article, we consider the non-linear Choquard equation − Δ u + V ( ∣ x ∣ ) u = ∫ R 3 ∣ u ( y ) ∣ 2 ∣ x − y ∣ d y u in R 3 , -\Delta u+V\left(| x| )u=\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}\frac{| u(y){| }^{2}}{| x-y
Publikováno v:
Journal of Differential Equations. 295:70-112
We study the following class of pseudo-relativistic Hartree equations − e 2 Δ + m 2 u + V ( x ) u = e μ − N ( | x | − μ ⁎ F ( u ) ) f ( u ) in R N , where the nonlinearity satisfies general hypotheses of Berestycki-Lions type. By using the
Publikováno v:
Nonlinearity. 33:6695-6728
In this paper we are interested in the existence of semiclassical states for the Choquard type equation − ε 2 Δ u + V ( x ) u = ∫ R N G ( u ( y ) ) | x − y | μ d y g ( u ) in R N , where 0 < μ < N, N ⩾ 3, ɛ is a positive parameter and G
Publikováno v:
Mathematical Methods in the Applied Sciences. 44:772-798
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 150:921-954
In this paper, we consider the nonlinear Choquard equation $$-\Delta u + V(x)u = \left( {\int_{{\open R}^N} {\displaystyle{{G(u)} \over { \vert x-y \vert ^\mu }}} \,{\rm d}y} \right)g(u)\quad {\rm in}\;{\open R}^N, $$ where 0 < μ < N, N ⩾ 3, g(u)
We study the coupled Hartree system $$ \left\{\begin{array}{ll} -\Delta u+ V_1(x)u =\alpha_1\big(|x|^{-4}\ast u^{2}\big)u+\beta \big(|x|^{-4}\ast v^{2}\big)u &\mbox{in}\ \mathbb{R}^N,\\[1mm] -\Delta v+ V_2(x)v =\alpha_2\big(|x|^{-4}\ast v^{2}\big)v +
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4e8979a393cc927a294996f6a0a35f91
https://cronfa.swan.ac.uk/Record/cronfa56630/Download/56630__19613__4d75ba3a4de144caa5d76504af4d7c9d.pdf
https://cronfa.swan.ac.uk/Record/cronfa56630/Download/56630__19613__4d75ba3a4de144caa5d76504af4d7c9d.pdf
Autor:
Minbo Yang, Fashun Gao
Publikováno v:
Science China Mathematics. 61:1219-1242
We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation $$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \righ