Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Faro, Dario"'
In this paper we study higher Gaussian (or Wahl) maps for the canonical bundle of certain smooth projective curves. More precisely, we determine the rank of higher Gaussian maps of the canonical bundle for plane curves, for curves contained in certai
Externí odkaz:
http://arxiv.org/abs/2411.12382
Autor:
Faro, Dario, Tamborini, Carolina
In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini it was proven that for infinitely many values of $g$ and $n$, there exist non-tautological algebraic cohomology classes on the moduli space $\mathcal{M}_{g,n}$ of smooth genus
Externí odkaz:
http://arxiv.org/abs/2410.04400
In this paper we study higher even Gaussian maps of the canonical bundle on hyperelliptic curves and we determine their rank, giving explicit descriptions of their kernels. Then we use this descriptions to investigate the hyperelliptic Torelli map $j
Externí odkaz:
http://arxiv.org/abs/2406.17408
Autor:
Faro, Dario
We give obstructions - in terms of Gaussian maps - for a marked Prym curve $(C,\alpha,T_d)$ to admit a singular model lying on an Enriques surface with only one $d$-ordinary point singularity and in such a way that $T_d$ corresponds to the divisor ov
Externí odkaz:
http://arxiv.org/abs/2306.07654
Autor:
Faro, Dario, Spelta, Irene
We prove that the $k$-th Gaussian map $\gamma^k_{H}$ is surjective on a polarized unnodal Enriques surface $(S, H)$ with $\phi(H)>2k+4$. In particular, as a consequence, when $\phi(H)>4(k+2)$, we obtain the surjectivity of the $k$-th Gauss-Prym map $
Externí odkaz:
http://arxiv.org/abs/2206.02430
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Faro, Dario1 (AUTHOR), Spelta, Irene1 (AUTHOR) irene.spelta@unipv.it
Publikováno v:
Mathematische Nachrichten. Sep2023, Vol. 296 Issue 9, p4454-4462. 9p.