Zobrazeno 1 - 10
of 192
pro vyhledávání: '"Farkas, Balint"'
A dynamic iteration scheme for linear infinite-dimensional port-Hamiltonian systems is proposed. The dynamic iteration is monotone in the sense that the error is decreasing, it does not require any stability condition and is in particular applicable
Externí odkaz:
http://arxiv.org/abs/2302.01195
Publikováno v:
Trudy Instituta Matematiki i Mekhaniki UrO RAN Vol. 28 No. 4, 262-272 (2022)
In previous papers we investigated so-called sum of translates functions $F({\mathbf{x}},t):=J(t)+\sum_{j=1}^n \nu_j K(t-x_j)$, where $J:[0,1]\to \underline{\mathbb{R}}:={\mathbb{R}}\cup\{-\infty\}$ is a "sufficiently nondegenerate" and upper-bounded
Externí odkaz:
http://arxiv.org/abs/2210.06387
Following P. Fenton, we investigate sum of translates functions $F(\mathbf{x},t):=J(t)+\sum_{j=1}^n \nu_j K(t-x_j)$, where $J:[0,1]\to {\underline{\mathbb{R}}}:=\mathbb{R}\cup\{-\infty\}$ is a "sufficiently non-degenerate" and upper-bounded "field fu
Externí odkaz:
http://arxiv.org/abs/2210.04348
Due to the seminal works of Hochbruck and Ostermann exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial
Externí odkaz:
http://arxiv.org/abs/2207.10734
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 March 2025 543(2) Part 2
For a fixed positive integer $n$ consider continuous functions $ K_1,\dots$, $ K_n:[-1,1]\to \mathbb{R}\cup\{-\infty\}$ that are concave and real valued on $[-1,0)$ and on $(0,1]$, and satisfy $K_j(0)=-\infty$. Moreover, let $J:[0,1]\to \mathbb{R}\cu
Externí odkaz:
http://arxiv.org/abs/2112.11029
We derive a numerical method, based on operator splitting, to abstract parabolic semilinear boundary coupled systems. The method decouples the linear components which describe the coupling and the dynamics in the bulk and on the surface, and treats t
Externí odkaz:
http://arxiv.org/abs/2112.10601
Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very ge
Externí odkaz:
http://arxiv.org/abs/2112.10169
Publikováno v:
In Transportation Research Procedia 2024 77:35-42
Autor:
Farkas, Bálint, Sziráki, Tamás
Publikováno v:
In Transportation Research Procedia 2024 77:51-59