Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Farjoun, Emmanuel D."'
Autor:
Farjoun, Emmanuel D., Mikhailov, Roman
Publikováno v:
Algebr. Geom. Topol. 18 (2018) 569-582
K. Orr defined a Milnor-type invariant of links that lies in the third homotopy group of a certain space $K_\omega.$ The problem of non-triviality of this third homotopy group has been open. We show that it is an infinitely generated group. The quest
Externí odkaz:
http://arxiv.org/abs/1703.10537
Autor:
Farjoun, Emmanuel D., Segev, Yoav
The purpose of this note is to observe that a homomorphism of discrete groups $f:\Gamma\to G$ arises as the induced map $\pi_0(\mathfrak{M})\to \pi_0(\mathfrak{X})$ on path components of some closed normal inclusion of topological groups $\mathfrak{M
Externí odkaz:
http://arxiv.org/abs/1604.06551
Autor:
Farjoun, Emmanuel D., Segev, Yoav
In this note, starting with any group homomorphism $f\colon\Gamma\to G$, which is surjective upon abelianization, we construct a universal central extension $u\colon U\twoheadrightarrow G,$ UNDER $\Gamma$ with the same surjective property, such that
Externí odkaz:
http://arxiv.org/abs/1410.6090
Autor:
Farjoun, Emmanuel D., Segev, Yoav
Let $\varphi\colon\Gamma\to G$ be a homomorphism of groups. In this paper we introduce the notion of a subnormal map (the inclusion of a subnormal subgroup into a group being a basic prototype). We then consider factorizations $\Gamma\xrightarrow{\ps
Externí odkaz:
http://arxiv.org/abs/1405.0090
Autor:
Farjoun, Emmanuel D., Segev, Yoav
Let $\varphi\colon\Gamma\to G$ be a homomorphism of groups. We consider factorizations $\Gamma\xrightarrow{f} M\xrightarrow{g} G$ of $\varphi$ such that either $g$ or $f$ are universal normal maps (namely, crossed modules). These two factorizations a
Externí odkaz:
http://arxiv.org/abs/1403.3501
Autor:
Farjoun, Emmanuel D., Hess, Kathryn
Let M be a monoidal category endowed with a distinguished class of weak equivalences and with appropriately compatible classifying bundles for monoids and comonoids. We define and study homotopy-invariant notions of normality for maps of monoids and
Externí odkaz:
http://arxiv.org/abs/1011.5597
In the present paper we continue to examine cellular covers of groups, focusing on the cardinality and the structure of the kernel K of the cellular map G-> M . We show that in general a torsion free reduced abelian group M may have a proper class of
Externí odkaz:
http://arxiv.org/abs/math/0702294
Autor:
Farjoun, Emmanuel D., Segev, Yoav
Publikováno v:
In Journal of Algebra 1 February 2015 423:1010-1043