Zobrazeno 1 - 10
of 9 966
pro vyhledávání: '"Fargues A."'
$p$-adic geometric pro-\'etale cohomology of smooth partially proper rigid analytic varieties over $p$-adic fields can be represented by solid quasi-coherent sheaves on the Fargues-Fontaine curve. We prove that these sheaves satisfy a Poincar\'e dual
Externí odkaz:
http://arxiv.org/abs/2411.12163
In this paper, we apply the theory of Bridgeland stability conditions, which was originated from string theory, to study the derived category of coherent sheaves on Fargues--Fontaine curves. This leads us to consider the quasi-coherent sheaves $\math
Externí odkaz:
http://arxiv.org/abs/2404.04551
This article, written in Spanish, provides a comprehensive review of the Fargues-Fontaine curve, a cornerstone in $p$-adic Hodge theory, and its pivotal role in classifying $p$-adic Galois representations. We synthesize key developments surrounding t
Externí odkaz:
http://arxiv.org/abs/2405.13250
Autor:
Achille, Étienne, author, PanaÏtÉ, Oana, author
Publikováno v:
Fictions of Race in Contemporary French Literature : French Writers, White Writing, 2024.
Externí odkaz:
https://doi.org/10.1093/oso/9780198893134.003.0008
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gleason, Ian, Ivanov, Alexander B.
We introduce and study the stack of \textit{meromorphic} $G$-bundles on the Fargues--Fontaine curve. This object defines a correspondence between the Kottwitz stack $\mathfrak{B}(G)$ and $\operatorname{Bun}_G$. We expect it to play a crucial role in
Externí odkaz:
http://arxiv.org/abs/2307.00887
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study unramified unitary and unitary similitude groups in an odd number of variables. Using work of the first and third named authors on the Kottwitz Conjecture for the similitude groups, we show that the Fargues--Scholze local Langlands correspon
Externí odkaz:
http://arxiv.org/abs/2207.13193
Autor:
Hesselholt, Lars
The purpose of this expository paper is to explain how the Fargues-Fontaine curve and its decomposition into a punctured curve and the formal neighborhood of the puncture naturally arise from various forms of topological cyclic homology and maps betw
Externí odkaz:
http://arxiv.org/abs/2208.00168
Autor:
Bartling, Sebastian
In this article the \'etale cohomology of constructible torsion sheaves on the \'etale site of the algebraic resp. adic Fargues-Fontaine curve is analyzed. In the $\ell\neq p$-torsion case, two conjectures of Fargues are verified: vanishing in degree
Externí odkaz:
http://arxiv.org/abs/2206.14253