Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Faramarz Vafaee"'
Autor:
Faramarz Vafaee, Yi Ni
Publikováno v:
Transactions of the American Mathematical Society. 372:8279-8306
Let $K$ be a knot in an L-space $Y$ with a Dehn surgery to a surface bundle over $S^1$. We prove that $K$ is rationally fibered, that is, the knot complement admits a fibration over $S^1$. As part of the proof, we show that if $K\subset Y$ has a Dehn
Publikováno v:
Algebr. Geom. Topol. 20, no. 2 (2020), 757-816
The spherical manifold realization problem asks which spherical three-manifolds arise from surgeries on knots in $S^3$. In recent years, the realization problem for C, T, O, and I-type spherical manifolds has been solved, leaving the D-type manifolds
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f94d6188142292c31e4e27878ef924e
https://resolver.caltech.edu/CaltechAUTHORS:20180308-070142351
https://resolver.caltech.edu/CaltechAUTHORS:20180308-070142351
Publikováno v:
Compositio Mathematica. 154:918-933
We characterize the $(1,1)$ knots in the 3-sphere and lens spaces that admit non-trivial L-space surgeries. As a corollary, 1-bridge braids in these manifolds admit non-trivial L-space surgeries. We also recover a characterization of the Berge manifo
We classify closed 3-braids which are L-space knots.
9 pages, 1 figure
9 pages, 1 figure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0311e12502e517af5345c9f262fe79b0
http://arxiv.org/abs/1911.01289
http://arxiv.org/abs/1911.01289
Autor:
Andrew Donald, Faramarz Vafaee
Publikováno v:
Proceedings of the American Mathematical Society. 144:5397-5405
Autor:
Faramarz Vafaee
Publikováno v:
Topology and its Applications. 184:72-86
In this paper we find a family of knots with trivial Alexander polynomial, and construct two non-isotopic Seifert surfaces for each member in our family. In order to distinguish the surfaces we study the sutured Floer homology invariants of the sutur
Publikováno v:
Algebr. Geom. Topol. 14, no. 6 (2014), 3745-3763
Let $P(K)$ be a satellite knot where the pattern, $P$, is a Berge-Gabai knot (i.e., a knot in the solid torus with a non-trivial solid torus Dehn surgery), and the companion, $K$, is a non-trivial knot in $S^3$. We prove that $P(K)$ is an L-space kno
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d2e4473c31ad7c7f28c7db97cfa72f2
https://resolver.caltech.edu/CaltechAUTHORS:20150327-060832382
https://resolver.caltech.edu/CaltechAUTHORS:20150327-060832382
Autor:
Faramarz Vafaee
In this paper we study the knot Floer homology of a subfamily of twisted $(p, q)$ torus knots where $q \equiv\pm1$ (mod $p$). Specifically, we classify the knots in this subfamily that admit L-space surgeries. To do calculations, we use the fact that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5da52599af58f0ca743815a28287e553