Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Fapeng Du"'
Autor:
M. Zuhair Nashed, Fapeng Du
Publikováno v:
Numerical Functional Analysis and Optimization. 41:1728-1740
In this paper, we introduce the notion of stable perturbation of a subspace in Banach space. Utilizing this notion and the gap between subspaces, we develop a perturbation analysis for the oblique ...
Autor:
M. Zuhair Nashed, Fapeng Du
Publikováno v:
Filomat. 32:6131-6144
In this paper, we present some characteristics and expressions of the core inverse A# of bounded linear operator A in Hilbert spaces. Additive perturbations of core inverse are investigated under the condition R( ?)?N(A#) = {0} and an upper bound of
Autor:
Fapeng Du, Jianlong Chen
Publikováno v:
Ann. Funct. Anal. 7, no. 2 (2016), 240-253
In this paper, we characterize the perturbations of the Moore–Penrose metric generalized inverse of closed operator in Banach spaces. Under the condition $R(\delta T)\subset R(T)$ , $N(T)\subset N(\delta T)$ , respectively, we get some new results
Autor:
Fapeng Du
Publikováno v:
Filomat. 30:2155-2164
Let $A,X,Y$ be bounded linear operators. In this paper, we present the explicit expression for the Moore--Penrose inverse of $A-XY$. In virtue of the expression of $(A+X)^\dag$, we get the upper bounds of $\|(A+X)^\dag\|$ and $\|(A+X)^\dag-A^\dag\|$.
Autor:
FAPENG DU1,2 jsdfp@163.com, YIFENG XUE3 yfxue@math.ecnu.edu.cn
Publikováno v:
Kyungpook Mathematical Journal. Jun2015, Vol. 55 Issue 2, p251-258. 8p.
Autor:
Fapeng Du, Yifeng Xue
Publikováno v:
Filomat. 28:1103-1112
In this paper, we present the explicit expression for the group inverse of the sum of two matrices. As an application, the explicit expression for the group inverse of the anti-triangular block matrix $\begin{pmatrix}A&B\\C&0\end{pmatrix}$ and $\begi
Autor:
Fapeng Du, Yifeng Xue
Publikováno v:
Filomat. 27:65-74
Let $\R $ be a ring with unit 1 and $a\in \R, \bar{a}=a+��a\in \R $ such that $a^#$ exists. In this paper, we mainly investigate the perturbation of the group inverse $a^#$ on $\R$. Under the stable perturbation, we obtain the explicit expression
Autor:
Fapeng Du
Publikováno v:
Banach J. Math. Anal. 9, no. 4 (2015), 100-114
Utilizing the gap between homogenous subsets which is introduced in this paper, the perturbations for the Moore--Penrose metric generalized inverses of bounded linear operators in Banach spaces are discussed. Under range--preseving, kernel--preseving
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cdca4fc7031a36315ef7a07630cf38a8
http://projecteuclid.org/euclid.bjma/1429286059
http://projecteuclid.org/euclid.bjma/1429286059
Autor:
Fapeng Du, Yifeng Xue
In this paper, we investigate the perturbation for the Moore-Penrose inverse of closed operators on Hilbert spaces. By virtue of a new inner product defined on $H$, we give the expression of the Moore-Penrose inverse $\bar{T}^\dag$ and the upper boun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dbdd63ef5fb5b6096a3d1350951a39f9
http://arxiv.org/abs/1301.7484
http://arxiv.org/abs/1301.7484
Autor:
Yifeng Xue, Fapeng Du
In this paper, we investigate the invertibility of $I_Y+\delta TT^+$ when $T$ is a closed operator from $X$ to $Y$ with a generalized inverse $T^+$ and $\delta T$ is a linear operator whose domain contains $D(T)$ and range is contained in $D(T^+)$. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4cc2c1ca75950a840cfadb010dd5202e
http://arxiv.org/abs/1209.1766
http://arxiv.org/abs/1209.1766