Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Faouzi Adjed"'
Autor:
Faouzi Adjed, Syed Jamal Safdar Gardezi, Fakhreddine Ababsa, Ibrahima Faye, Sarat Chandra Dass
Publikováno v:
IET Computer Vision, Vol 12, Iss 2, Pp 185-195 (2018)
Melanoma is one the most increasing cancers since past decades. For accurate detection and classification, discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a fusion of struct
Externí odkaz:
https://doaj.org/article/d9046284e34c4327912cfebf9a511681
Autor:
Faouzi Adjed, Mallek Mziou-Sallami, Frédéric Pelliccia, Mehdi Rezzoug, Lucas Schott, Christophe Bohn, Yesmina Jaafra
Publikováno v:
Neural Computing and Applications
Neural Computing and Applications, 2022, 34 (19), pp.17129-17144. ⟨10.1007/s00521-022-07363-6⟩
Neural Computing and Applications, 2022, 34 (19), pp.17129-17144. ⟨10.1007/s00521-022-07363-6⟩
International audience; Safety requirements are among the main barriers to the industrialization of machine learning based on deep learning architectures. In this work, a new metric of data coverage is presented by exploring the algebraic topology th
GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions
Publikováno v:
Procedia Computer Science. 200:337-347
We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing (DfAM) to incorporate and cont
This paper investigates the potential of Deep Learning (DL) for data-driven topology optimization (TO). Unlike the rest of the literature that mainly applies DL to TO from a mechanical perspective, we developed an original approach to integrate mecha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e011bf7022be3e6c3bd1c1f4ac380fb
https://hdl.handle.net/10985/22157
https://hdl.handle.net/10985/22157
Autor:
Ivan Rukavina, Faouzi Adjed, Charlotte Chabanas, Samuel Van De Hel, Mohcine Nfaoui, Alexandre Demenais
Publikováno v:
Structural Integrity ISBN: 9783030978211
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6e8e75fb8a7a642472bef7c3822738bb
https://doi.org/10.1007/978-3-030-97822-8_21
https://doi.org/10.1007/978-3-030-97822-8_21
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031229527
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c18aa8ea1968dbe301fea6c38e3e4dd1
https://doi.org/10.1007/978-3-031-22953-4_5
https://doi.org/10.1007/978-3-031-22953-4_5
Publikováno v:
Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021).
Publikováno v:
Journal of Medical Imaging and Health Informatics. 7:30-34
Autor:
Faouzi Adjed, Mohamed Meselhy Eltoukhy, Nidal Kamel, Syed Jamal Safdar Gardezi, Ibrahima Faye
Publikováno v:
Multimedia Tools and Applications. 77:3919-3940
Accurate segregation of pectoral muscles is very crucial in breast cancer detection. Pectoral segmentation is a challenging task due to heterogeneous tissues densities, neighborhood complexities and breast shape variabilities. This paper presents an
Autor:
Syed Jamal Safdar Gardezi, Nidal Kamel, Faouzi Adjed, Ibrahima Faye, Mohamed Meselhy Eltoukhy
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783319483078
AISI
AISI
This paper presents a feature fusion technique that can be used for classification of ROIs in breast cancer into normal and abnormal classes. The texture features are extracted using geometric invariant shift transform and statistical features from t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ebced101306a62a63c31c3684e5cea10
https://doi.org/10.1007/978-3-319-48308-5_67
https://doi.org/10.1007/978-3-319-48308-5_67