Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Fantechi, Barbara"'
Autor:
Fantechi, Barbara, Ricolfi, Andrea T.
Let $X$ be a variety. We study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack $\mathscr{C}oh^n(X)$ of $0$-dimensional coherent sheaves of length $n$ on $X$. To do so, we review the construction of the support
Externí odkaz:
http://arxiv.org/abs/2403.07859
Autor:
Fantechi, Barbara, Ricolfi, Andrea T.
Let $X$ be a quasiprojective scheme. In this expository note we collect a series of useful structural results on the stack $\mathscr{C}oh^n(X)$ parametrising $0$-dimensional coherent sheaves of length $n$ over $X$. For instance, we discuss its functo
Externí odkaz:
http://arxiv.org/abs/2403.03878
Autor:
Fantechi, Barbara, Miró-Roig, Rosa M.
Mukai proved that the moduli space of simple sheaves on a smooth projective K3 surface is symplectic, and in \cite{FM2} we gave two constructions allowing one to construct new locally closed Lagrangian/isotropic subspaces of the moduli from old ones.
Externí odkaz:
http://arxiv.org/abs/2403.00735
Autor:
Fantechi, Barbara, Miró-Roig, Rosa M.
Let $X$ be a K3 surface and let $\text{Spl}(r;c_1,c_2)$ be the moduli space of simple sheaves on $X$ of fixed rank $r$ and Chern classes $c_1$ and $c_2$. Under suitable assumptions, to a pair $(F,W)$ (respectively, $(F,V)$) where $F\in \text{Spl}(r;c
Externí odkaz:
http://arxiv.org/abs/2306.05338
Autor:
Fantechi, Barbara, Miró-Roig, Rosa M.
Given a vector bundle $F$ on a variety $X$ and $W\subset H^0(F)$ such that the evaluation map $W\otimes \mathcal{O}_X\to F$ is surjective, its kernel $S_{F,W}$ is called generalized syzygy bundle. Under mild assumptions, we construct a moduli space $
Externí odkaz:
http://arxiv.org/abs/2306.04317
We show that all the semi-smooth stable complex Godeaux surfaces, classified in [FPR18a], are smoothable, and that the moduli stack is smooth of the expected dimension 8 at the corresponding points.
Externí odkaz:
http://arxiv.org/abs/2105.00786
For a singular variety X, an essential step to determine its smoothability and study its deformations is the understanding of the tangent sheaf and of the sheaf T^1_X:=ext^1(Omega_X,O_X). A variety is semi-smooth if its singularities are \'etale loca
Externí odkaz:
http://arxiv.org/abs/2010.02296
For any locally free coherent sheaf on a fixed smooth projective curve, we study the class, in the Grothendieck ring of varieties, of the Quot scheme that parametrizes zero-dimensional quotients of the sheaf. We prove that this class depends only on
Externí odkaz:
http://arxiv.org/abs/1907.00826
Autor:
Fantechi, Barbara, Massarenti, Alex
Let $\overline{\mathcal{M}}_{g,A[n]}$ be the Hassett moduli stack of weighted stable curves, and let $\overline{M}_{g,A[n]}$ be its coarse moduli space. These are compactifications of $\mathcal{M}_{g,n}$ and $M_{g,n}$ respectively, obtained by assign
Externí odkaz:
http://arxiv.org/abs/1701.05861
Autor:
Fantechi, Barbara, Massarenti, Alex
The stack $\overline{\mathcal{M}}_{g,n}$ of stable curves and its coarse moduli space $\overline{M}_{g,n}$ are defined over $\mathbb{Z}$, and therefore over any field. Over an algebraically closed field of characteristic zero, Hacking showed that $\o
Externí odkaz:
http://arxiv.org/abs/1407.2284