Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Fang, Zhemei"'
Recent advancements in artificial intelligence (AI) have leveraged large-scale games as benchmarks to gauge progress, with AI now frequently outperforming human capabilities. Traditionally, this success has largely relied on solving Nash equilibrium
Externí odkaz:
http://arxiv.org/abs/2411.01217
Reinforcement Learning (RL) is highly dependent on the meticulous design of the reward function. However, accurately assigning rewards to each state-action pair in Long-Term RL (LTRL) challenges is formidable. Consequently, RL agents are predominantl
Externí odkaz:
http://arxiv.org/abs/2409.03301
In the domain of machine learning and game theory, the quest for Nash Equilibrium (NE) in extensive-form games with incomplete information is challenging yet crucial for enhancing AI's decision-making support under varied scenarios. Traditional Count
Externí odkaz:
http://arxiv.org/abs/2409.02706
Constructing effective algorithms to converge to Nash Equilibrium (NE) is an important problem in algorithmic game theory. Prior research generally posits that the upper bound on the convergence rate for games is $O\left(T^{-1/2}\right)$. This paper
Externí odkaz:
http://arxiv.org/abs/2402.12164
Counterfactual Regret Minimization (CFR) and its variants are widely recognized as effective algorithms for solving extensive-form imperfect information games. Recently, many improvements have been focused on enhancing the convergence speed of the CF
Externí odkaz:
http://arxiv.org/abs/2309.03084
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Cleaner Production 20 July 2019 226:419-431
Autor:
Davendralingam, Navindran, DeLaurentis, Daniel, Fang, Zhemei, Guariniello, Cesare, Han, Seung Yeob, Marais, Karen, Mour, Ankur, Uday, Payuna
Publikováno v:
In Procedia Computer Science 2014 28:702-710
Autor:
Fang, Zhemei, DeLaurentis, Daniel
Publikováno v:
In Procedia Computer Science 2014 28:449-456
Publikováno v:
In Procedia Computer Science 2013 16:275-282