Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Fanciullo, Maria Stella"'
Autor:
Di Fazio, Giuseppe, Fanciullo, Maria Stella, Monticelli, Dario Daniele, Rodney, Scott, Zamboni, Pietro
We prove local boundedness, Harnack's inequality and local regularity for weak solutions of quasilinear degenerate elliptic equations in divergence form with Rough coefficients. Degeneracy is encoded by a non-negative, symmetric, measurable matrix va
Externí odkaz:
http://arxiv.org/abs/2302.02220
We prove that Burenkov's Extension Operator preserves Sobolev spaces built on general Morrey spaces, including classical Morrey spaces. The analysis concerns bounded and unbounded open sets with Lipschitz boundaries in the n-dimensional Euclidean spa
Externí odkaz:
http://arxiv.org/abs/1603.02534
We prove a local version of Fefferman-Stein inequality for the local sharp maximal function, and a local version of John-Nirenberg inequality for locally BMO functions, in the framework of locally homogeneous spaces, in the sense of Bramanti-Zhu [Man
Externí odkaz:
http://arxiv.org/abs/1511.02384
For a linear nonvariational operator structured on smooth H\"ormander's vector fields, with H\"older continuous coefficients, we prove a regularity result in the spaces of H\"older functions. We deduce an analogous regularity result for nonvariationa
Externí odkaz:
http://arxiv.org/abs/1304.5236
In this note we study the global regularity in the Morrey spaces for the second derivatives for the strong solutions of non variational elliptic equations.
Externí odkaz:
http://arxiv.org/abs/1210.5164
We consider a class of nonvariational linear operators formed by homogeneous left invariant Hormander's vector fields with respect to a structure of Carnot group. The bounded coefficients of the operators belong to "vanishing logarithmic mean oscilla
Externí odkaz:
http://arxiv.org/abs/1209.3601
Publikováno v:
Mathematische Zeitschrift, 264/3, 679-695 (2010)
We prove Harnack inequality and local regularity results for weak solutions of a quasilinear degenerate equation in divergence form under natural growth conditions. The degeneracy is given by a suitable power of a strong $A_\infty$ weight. Regularity
Externí odkaz:
http://arxiv.org/abs/1010.0322
Autor:
DI FAZIO, GIUSEPPE1 giuseppedifazio@unict.it, FANCIULLO, MARIA STELLA1 fanciullo@dmi.unict.it, ZAMBONI, PIERO1 zamboni@dmi.unict.it
Publikováno v:
Electronic Journal of Differential Equations. 2022, p1-16. 16p.
Autor:
DI FAZIO, GIUSEPPE1 giuseppedifazio@unict.it, FANCIULLO, MARIA STELLA1 fanciullo@dmi.unict.it, ZAMBONI, PIETRO1 zamboni@dmi.unict.it
Publikováno v:
Electronic Journal of Differential Equations. 2017, Vol. 2017 Issue 146-199, p1-10. 10p.
Autor:
Fanciullo, Maria Stella1 fanciullo@dmi.unict.it, Lamberti, Pier Domenico2 lamberti@math.unipd.it
Publikováno v:
Mathematische Nachrichten. Jan2017, Vol. 290 Issue 1, p37-49. 13p.