Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Fan, Yunfeng"'
Recently, Multimodal Learning (MML) has gained significant interest as it compensates for single-modality limitations through comprehensive complementary information within multimodal data. However, traditional MML methods generally use the joint lea
Externí odkaz:
http://arxiv.org/abs/2407.19514
Selecting proper clients to participate in each federated learning (FL) round is critical to effectively harness a broad range of distributed data. Existing client selection methods simply consider the mining of distributed uni-modal data, yet, their
Externí odkaz:
http://arxiv.org/abs/2401.00403
Federated learning (FL) underpins advancements in privacy-preserving distributed computing by collaboratively training neural networks without exposing clients' raw data. Current FL paradigms primarily focus on uni-modal data, while exploiting the kn
Externí odkaz:
http://arxiv.org/abs/2401.00894
This paper investigates a new, practical, but challenging problem named Non-exemplar Online Class-incremental continual Learning (NO-CL), which aims to preserve the discernibility of base classes without buffering data examples and efficiently learn
Externí odkaz:
http://arxiv.org/abs/2303.10891
Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as
Externí odkaz:
http://arxiv.org/abs/2303.07864
Multimodal learning (MML) aims to jointly exploit the common priors of different modalities to compensate for their inherent limitations. However, existing MML methods often optimize a uniform objective for different modalities, leading to the notori
Externí odkaz:
http://arxiv.org/abs/2211.07089
Autor:
Cui, Chen, Fan, Yunfeng, Chen, Yaxuan, Wei, Renlong, Lv, Jie, Yan, Meng, Jiang, Dechen, Liu, Zhimin
Publikováno v:
In Talanta 1 July 2024 274
Publikováno v:
In Procedia Computer Science 2024 242:294-304
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.