Zobrazeno 1 - 10
of 241
pro vyhledávání: '"Fall, Mouhamed"'
Autor:
Fall, Mouhamed Moustapha, Weth, Tobias
We analyze the shape of radial second Dirichlet eigenfunctions of fractional Schr\"odinger type operators of the form $(-\Delta)^s +V$ in the unit ball $B$ in $\mathbb{R}^N$ with a nondecreasing radial potential $V$. Specifically, we show that the ei
Externí odkaz:
http://arxiv.org/abs/2405.02120
Autor:
Fall, Mouhamed Moustapha, Weth, Tobias
We prove that positive solutions $u\in H^s(\mathbb{R}^N)$ to the equation $(-\Delta )^s u+ u=u^p$ in $\mathbb{R}^N$ are nonradially nondegenerate, for all $s\in (0,1)$, $N\geq 1$ and $p>1$ strictly smaller than the critical Sobolev exponent. By this
Externí odkaz:
http://arxiv.org/abs/2310.10577
We consider the Dirichlet eigenvalues of the fractional Laplacian $(-\Delta)^s$, with $s\in (0,1)$, related to a smooth bounded domain $\Omega$. We prove that there exists an arbitrarily small perturbation $\tilde\Omega=(I+\psi)(\Omega)$ of the origi
Externí odkaz:
http://arxiv.org/abs/2304.07335
We prove the existence of a family of compact subdomains $\Omega$ of the flat cylinder $\mathbb{R}^N\times \mathbb{R}/2\pi\mathbb{Z}$ for which the Neumann eigenvalue problem for the Laplacian on $\Omega$ admits eigenfunctions with constant Dirichlet
Externí odkaz:
http://arxiv.org/abs/2303.17036
Autor:
Brabant, Marie, Demaude, Annaelle, Mertens, Jeremy, Fosseur, Nicolas, Remy, Antoine, Fall, Mouhamed Serigne, Petitjean, David, Segato, Tiriana, Godet, Stephane, Reniers, François
Publikováno v:
In Surface & Coatings Technology 1 January 2025 495
Publikováno v:
In Food Bioscience December 2024 62
We study the existence of nontrivial unbounded surfaces $S\subset \mathbb{R}^3$ with the property that the constant charge distribution on $S$ is an electrostatic equilibrium, i.e. the resulting electrostatic force is normal to the surface at each po
Externí odkaz:
http://arxiv.org/abs/2203.15713
We prove a fractional Pohozaev type identity in a generalized framework and discuss its applications. Specifically, we shall consider applications to nonexistence of solutions in the case of supercritical semilinear Dirichlet problems and regarding a
Externí odkaz:
http://arxiv.org/abs/2112.10653
We provide a Hopf boundary lemma for the regional fractional Laplacian $(-\Delta)^s_{\Omega}$, with $\Omega\subset\mathbb{R}^N$ a bounded open set. More precisely, given $u$ a pointwise or weak super-solution of the equation $(-\Delta)^s_{\Omega} u =
Externí odkaz:
http://arxiv.org/abs/2112.09522
The aim of the present paper is to study existence results of minimizers of the critical fractional Sobolev constant on bounded domains. Under some values of the fractional parameter we show that the best constant is achieved. If moreover the underly
Externí odkaz:
http://arxiv.org/abs/2112.06272