Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Faitg, Matthieu"'
We prove that the quantum moduli algebra associated to a possibly punctured compact oriented surface and a complex semisimple Lie algebra $\mathfrak{g}$ is a Noetherian and finitely generated ring; if the surface has punctures, we prove also that it
Externí odkaz:
http://arxiv.org/abs/2302.00396
Publikováno v:
Selecta Math. New Ser. 30, article number 26 (2024)
Davydov--Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exa
Externí odkaz:
http://arxiv.org/abs/2202.12287
Autor:
Faitg, Matthieu
The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and quantizes the character variety of the Riemann surface $\Sigma_{g,n}\!\setminus\! D$ ($D$ is an open disk). In this article we define a holonomy ma
Externí odkaz:
http://arxiv.org/abs/2003.08992
Autor:
Faitg, Matthieu
The algebras $\mathcal{L}_{g,n}(H)$ have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat connections over the surface $\Sigma_{g,n}
Externí odkaz:
http://arxiv.org/abs/1910.04110
Autor:
Faitg, Matthieu
Publikováno v:
Commun. Math. Phys. 377, 161-198 (2020)
Let $\Sigma_{g,n}$ be a compact oriented surface of genus $g$ with $n$ open disks removed. The graph algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev--Grosse--Schomerus and Buffenoir--Roche and is a combinatorial quantization of the moduli s
Externí odkaz:
http://arxiv.org/abs/1812.00446
Autor:
Faitg, Matthieu
Publikováno v:
SIGMA 15 (2019), 077, 39 pages
Let $\Sigma_{g,n}$ be a compact oriented surface of genus $g$ with $n$ open disks removed. The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of f
Externí odkaz:
http://arxiv.org/abs/1805.00924
Autor:
Faitg, Matthieu
Publikováno v:
Osaka J. Math. 57 (2020), 575-595
We prove two results about $\text{SLF}(\bar U_q)$, the algebra of symmetric linear forms on the restricted quantum group $\bar U_q = \bar U_q(\mathfrak{sl}(2))$. First, we express any trace on finite dimensional projective $\bar U_q$-modules as a lin
Externí odkaz:
http://arxiv.org/abs/1801.07524
Autor:
Faitg, Matthieu1 (AUTHOR) matthieu.faitg@umontpellier.fr
Publikováno v:
Communications in Mathematical Physics. Jul2020, Vol. 377 Issue 1, p161-198. 38p.
Autor:
Faitg, Matthieu
Publikováno v:
Osaka Journal of Mathematics. 57(3):575-595
In this paper we prove two results about SLF(Ūq), the algebra of symmetric linear forms on the restricted quantum group Ūq = Ūq (sl(2)). First, we express any trace on finite dimensional projective Ūq-modules as a linear combination in the basis
Autor:
Faitg, Matthieu
Publikováno v:
General Mathematics [math.GM]. Université Montpellier, 2019. English. ⟨NNT : 2019MONTS023⟩
The algebras L(g,n,H) have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat G-connections over the surface S(g,n) of genus g with n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::784ebcdd35ae348cd248590a9d2cf86e
https://tel.archives-ouvertes.fr/tel-02381323/file/FAITG_2019_archivage.pdf
https://tel.archives-ouvertes.fr/tel-02381323/file/FAITG_2019_archivage.pdf