Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Fagner B. Rodrigues"'
Publikováno v:
Communications in Mathematical Physics. 378:75-115
We study the existence of limiting laws of rare events corresponding to the entrance of the orbits on certain target sets in the phase space. The limiting laws are obtained when the target sets shrink to a Cantor set of zero Lebesgue measure. We cons
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We consider continuous free semigroup actions generated by a family $(g_y)_{y \,\in \, Y}$ of continuous endomorphisms of a compact metric space $(X,d)$ , subject to a random walk $\mathbb P_\nu =\nu ^{\mathbb N}$ defined on a shift space $Y^{\mathbb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3371248d27823373aab9f76dd625de2a
https://hdl.handle.net/10216/131653
https://hdl.handle.net/10216/131653
Publikováno v:
Dynamical Systems. 35:306-314
In this note, we characterize hyperbolicity of invariant laminations for partially hyperbolic diffeomorphisms in terms of a leafwise shadowing property. We prove that a C 1 -diffeomorphism with par...
The aim of this manuscript is to study some local properties of the topological entropy of a free semigroup action. In order to do that we focus on the set of entropy points of a free semigroup action, show that this set carries the full entropy of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c97715c0fc92c6f53ba2a277fb104c5f
http://arxiv.org/abs/2107.14260
http://arxiv.org/abs/2107.14260
In this manuscript we show that the metric mean dimension of a free semigroup action satisfies three variational principles: (a) the first one is based on a definition of Shapira's entropy, introduced in \cite{SH} for a singles dynamics and extended
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0dc924f3d096f7914c72a9bf42667603
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
In this paper we introduce a notion of measure theoretical entropy for a finitely generated free semigroup action and establish a variational principle when the semigroup is generated by continuous self maps on a compact metric space and has finite t
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We prove that for $C^0$ -generic homeomorphisms, acting on a compact smooth boundaryless manifold with dimension greater than one, the upper metric mean dimension with respect to the smooth metric coincides with the dimension of the manifold. As an a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::08600c346c6f111d7be5beafbdf3043d
http://arxiv.org/abs/1910.07376
http://arxiv.org/abs/1910.07376
Publikováno v:
Springer Science+Business Media, LLC, part of Springer Nature 2021
Repositorio Institucional UTB
Universidad Tecnológica de Bolívar
instacron:Universidad Tecnológica de Bolívar
Repositorio Institucional UTB
Universidad Tecnológica de Bolívar
instacron:Universidad Tecnológica de Bolívar
In this paper we extend the definitions of mean dimension and metric mean di-mension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c95046f06deb4a4220c0abf6c5cfd9f8
Publikováno v:
Journal of Mathematical Analysis and Applications. 480:123426
In this paper we obtain an almost sure invariance principle for convergent sequences of either Anosov diffeomorphisms or expanding maps on compact Riemannian manifolds and prove an ergodic stability result for such sequences. The sequences of maps ne