Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Faes, Quentin"'
We consider the associated graded $\bigoplus_{k\geq 1} \Gamma_k \mathcal{I} / \Gamma_{k+1} \mathcal{I} $ of the lower central series $\mathcal{I} = \Gamma_1 \mathcal{I} \supset \Gamma_2 \mathcal{I} \supset \Gamma_3 \mathcal{I} \supset \cdots$ of the
Externí odkaz:
http://arxiv.org/abs/2407.07981
Autor:
Faes, Quentin
The so-called Johnson homomorphisms $(\tau_k)_{k \geq 1}$ embed the graded space associated to the Johnson filtration of a surface with one boundary component into the Lie ring of positive symplectic derivations $D(H)$. In this paper, we show the exi
Externí odkaz:
http://arxiv.org/abs/2304.12662
Autor:
Faes, Quentin, Massuyeau, Gwenael
The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves. The rational abelianization of the Johnson kernel has been computed by Dimca, Hain and
Externí odkaz:
http://arxiv.org/abs/2209.12740
Autor:
Faes, Quentin
We define trace-like operators on a subspace of the space of derivations of the free Lie algebra generated by the first homology group $H$ of a surface $\Sigma$. This definition depends on the choice of a Lagrangian of $H$, and we call these operator
Externí odkaz:
http://arxiv.org/abs/2206.10687
Autor:
Faes, Quentin
We prove that all homology 3-spheres are $J_4$-equivalent, i.e. that any homology 3-sphere can be obtained from one another by twisting one of its Heegaard splittings by an element of the mapping class group acting trivially on the fourth nilpotent q
Externí odkaz:
http://arxiv.org/abs/2105.14253
Autor:
Faes, Quentin
Publikováno v:
Algebr. Geom. Topol. 23 (2023) 243-293
Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\mathcal{A} \cap J_2$. We introduce two trace-like o
Externí odkaz:
http://arxiv.org/abs/2010.16268
Autor:
Faes, Quentin
Publikováno v:
In Topology and its Applications 1 February 2023 324
Autor:
Faes, Quentin
Publikováno v:
Algebraic & Geometric Topology. 23:243-293
Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\mathcal{A} \cap J_2$. We introduce two trace-like o
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Faes, Quentin
The Torelli group of a surface consists of isotopy classes of homeomorphisms of this surface acting trivially at the homological level. The structure of the Torelli group can be approached by the study and the comparison of two filtrations of this gr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3711::a141f7a8e57c50d8651f8e39e0184aa5
https://hal.science/tel-03549784v2
https://hal.science/tel-03549784v2