Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Fadi Boutros"'
Autor:
Naser Damer, Fadi Boutros, Marius Süßmilch, Meiling Fang, Florian Kirchbuchner, Arjan Kuijper
Publikováno v:
IET Biometrics, Vol 11, Iss 5, Pp 512-528 (2022)
Abstract The recent COVID‐19 pandemic has increased the focus on hygienic and contactless identity verification methods. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a
Externí odkaz:
https://doaj.org/article/a4a1d908434548f696dad37f39b59f35
Autor:
Pedro C. Pedro Neto, Joao Ribeiro Pinto, Fadi Boutros, Naser Damer, Ana F. Sequeira, Jaime S. Cardoso
Publikováno v:
IEEE Access, Vol 10, Pp 86222-86233 (2022)
Over the years, the evolution of face recognition (FR) algorithms has been steep and accelerated by a myriad of factors. Motivated by the unexpected elements found in real-world scenarios, researchers have investigated and developed a number of metho
Externí odkaz:
https://doaj.org/article/5cb8fefa506f4c1980843389a9c8cdc8
Publikováno v:
IEEE Access, Vol 10, Pp 46823-46833 (2022)
Deep neural networks have rapidly become the mainstream method for face recognition (FR). However, this limits the deployment of such models that contain an extremely large number of parameters to embedded and low-end devices. In this work, we presen
Externí odkaz:
https://doaj.org/article/ababf968562846db95fe906210e89d86
Publikováno v:
IET Biometrics, Vol 10, Iss 5, Pp 548-561 (2021)
Abstract Face recognition is an essential technology in our daily lives as a contactless and convenient method of accurate identity verification. Processes such as secure login to electronic devices or identity verification at automatic border contro
Externí odkaz:
https://doaj.org/article/f1ceb08654734e8fa48aaa9846f6961b
Publikováno v:
Sensors, Vol 22, Iss 5, p 1921 (2022)
This work addresses the challenge of building an accurate and generalizable periocular recognition model with a small number of learnable parameters. Deeper (larger) models are typically more capable of learning complex information. For this reason,
Externí odkaz:
https://doaj.org/article/843a3da8dc524ed4b5516a4ba21e6f27
Autor:
Matej Vitek, Abhijit Das, Diego Rafael Lucio, Luiz Antonio Zanlorensi, David Menotti, Jalil Nourmohammadi Khiarak, Mohsen Akbari Shahpar, Meysam Asgari-Chenaghlu, Farhang Jaryani, Juan E. Tapia, Andres Valenzuela, Caiyong Wang, Yunlong Wang, Zhaofeng He, Zhenan Sun, Fadi Boutros, Naser Damer, Jonas Henry Grebe, Arjan Kuijper, Kiran Raja, Gourav Gupta, Georgios Zampoukis, Lazaros Tsochatzidis, Ioannis Pratikakis, S. V. Aruna Kumar, B. S. Harish, Umapada Pal, Peter Peer, Vitomir Struc
Publikováno v:
IEEE Transactions on Information Forensics and Security. 18:190-205
Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of
Autor:
Jaime Cardoso, Naser Damer, João Ribeiro Pinto, Fadi Boutros, Ana Sequeira, Pedro David Carneiro Neto
Publikováno v:
IEEE Access. 10:86222-86233
Publikováno v:
Handbook of Biometric Anti-Spoofing ISBN: 9789811952876
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cf54928df1f20ed0683925c8110e365d
https://doi.org/10.1007/978-981-19-5288-3_8
https://doi.org/10.1007/978-981-19-5288-3_8
Publikováno v:
2022 IEEE International Joint Conference on Biometrics (IJCB).
Publikováno v:
2022 International Conference of the Biometrics Special Interest Group (BIOSIG).