Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Fabrizio Cuccu"'
Autor:
Claudia Anedda, Fabrizio Cuccu
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 108,, Pp 1-10 (2013)
We consider the functional $$ fmapstoint_Omega ig(frac{q+1}{2} |Du_f|^2-u_f|u_f|^q fig) dx, $$ where $u_f$ is the unique nontrivial weak solution of the boundary-value problem $$ -Delta u=f|u|^qquad ext{in }Omega,quad uig|_{partialOmega}=0, $$ where
Externí odkaz:
https://doaj.org/article/5117951051264025af9f26e237bee5eb
Publikováno v:
Canadian Journal of Mathematics. 73:970-992
Let $\Omega \subset \mathbb {R}^N$ , $N\geq 2$ , be an open bounded connected set. We consider the fractional weighted eigenvalue problem $(-\Delta )^s u =\lambda \rho u$ in $\Omega $ with homogeneous Dirichlet boundary condition, where $(-\Delta )^s
Publikováno v:
Revista de Matemática: Teoría y Aplicaciones, Vol 16, Iss 1, Pp 127-136 (2009)
This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models th
Externí odkaz:
https://doaj.org/article/13bbe2eeac9d4f8d86fda449a4cc00ab
Publikováno v:
Electronic Journal of Differential Equations, Vol 2006, Iss 49, Pp 1-10 (2006)
This paper concerns an optimization problem related to the Poisson equation for the p-Laplace operator, subject to homogeneous Dirichlet boundary conditions. Physically the Poisson equation models, for example, the deformation of a nonlinear elastic
Externí odkaz:
https://doaj.org/article/9f9860ab4eab493fa789b895736cd161
Publikováno v:
Le Matematiche, Vol 60, Iss 2, Pp 339-352 (2005)
We deal with the Dirichlet problem in a bounded smooth domain.[omissis]
Externí odkaz:
https://doaj.org/article/19643b69dca44b4dbe6cac357313ebf7
Publikováno v:
Electronic Journal of Differential Equations, Vol 2003, Iss 71, Pp 1-8 (2003)
We investigate the geometric configuration of the maxima of some functionals associated with solutions to Dirichlet problems for special elliptic equations. We also discuss the symmetry breaking and symmetry preservation of the solutions in some part
Externí odkaz:
https://doaj.org/article/87b9cb6e75a6420fa2fa823aa3ad2bad
Autor:
Claudia Anedda, Fabrizio Cuccu
Publikováno v:
Proceedings of the American Mathematical Society. 144:3431-3440
Let Ω ⊂ R N \Omega \subset \mathbb {R}^N be an open bounded connected set. We consider the eigenvalue problem − Δ p u = λ ρ | u | p − 2 u -\Delta _p u =\lambda \rho |u|^{p-2}u in Ω \Omega with homogeneous Dirichlet boundary condition, wher
Autor:
Claudia Anedda, Fabrizio Cuccu
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 145:1-11
Let Ω ⊂ ℝN be an open bounded connected set. We consider the eigenvalue problem –Δu = λρu in Ω with Dirichlet boundary condition, where ρ is an arbitrary function that assumes only two given values 0 < α < β and is subject to the constr
Autor:
Fabrizio Cuccu, Claudia Anedda
Publikováno v:
Applicationes Mathematicae. 42:183-191
Publikováno v:
Advanced Nonlinear Studies. 13:79-95
We investigate minimization and maximization of the principal eigenvalue of the Laplacian under Dirichlet boundary conditions in case the weight has indefinite sign and varies in a class of rearrangements. Biologically, such optimization problems are