Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Fabrizio Clarelli"'
Autor:
Vi Ngoc-Nha Tran, Alireza Shams, Sinan Ascioglu, Antal Martinecz, Jingyi Liang, Fabrizio Clarelli, Rafal Mostowy, Ted Cohen, Pia Abel zur Wiesch
Publikováno v:
BMC Bioinformatics, Vol 23, Iss 1, Pp 1-15 (2022)
Abstract Background As antibiotic resistance creates a significant global health threat, we need not only to accelerate the development of novel antibiotics but also to develop better treatment strategies using existing drugs to improve their efficac
Externí odkaz:
https://doaj.org/article/3dd0590bae834732ad088cd1ab86823b
Autor:
Colin Hemez, Fabrizio Clarelli, Adam C. Palmer, Christina Bleis, Sören Abel, Leonid Chindelevitch, Theodore Cohen, Pia Abel zur Wiesch
Publikováno v:
Computational and Structural Biotechnology Journal, Vol 20, Iss , Pp 4688-4703 (2022)
Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic’s mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of
Externí odkaz:
https://doaj.org/article/64f42ecd435d49bab02b90fbb1cf678c
Autor:
Fabrizio Clarelli, Adam Palmer, Bhupender Singh, Merete Storflor, Silje Lauksund, Ted Cohen, Sören Abel, Pia Abel Zur Wiesch
Publikováno v:
PLoS Computational Biology, Vol 16, Iss 8, p e1008106 (2020)
Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputation
Externí odkaz:
https://doaj.org/article/cedf55b060ce4ede83872a81b49ec7a9
Publikováno v:
PLoS Computational Biology, Vol 13, Iss 1, p e1005321 (2017)
Identifying optimal dosing of antibiotics has proven challenging-some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations fo
Externí odkaz:
https://doaj.org/article/fc557373d5e04b9895f2c1bf8af2620a
Autor:
Antal Martinecz, Jingyi Liang, Ted Cohen, Pia Abel zur Wiesch, Rafal Mostowy, Sinan Ascioglu, Vi Ngoc-Nha Tran, Fabrizio Clarelli, Alireza Shams
Publikováno v:
BMC Bioinformatics
BMC Bioinformatics, Vol 23, Iss 1, Pp 1-15 (2022)
BMC Bioinformatics, Vol 23, Iss 1, Pp 1-15 (2022)
Background As antibiotic resistance creates a significant global health threat, we need not only to accelerate the development of novel antibiotics but also to develop better treatment strategies using existing drugs to improve their efficacy and pre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94aff4e1af91348cec244aa3e7e36923
https://hdl.handle.net/11250/2995338
https://hdl.handle.net/11250/2995338
Autor:
Markus Nowak, Eva Choong, Antal Martinecz, Hande Karaköse, Nick Verougstraete, Niklas Köhler, Robert A. Bonomo, Sönke Andres, Christina König, Andrew R. DiNardo, Jan Heyckendorf, Fabrizio Clarelli, Sebastian G. Wicha, Hans-Peter Grobbel, Harald Hoffmann, Charles A. Peloquin, Marga Teulen, Dagmar Schaub, Patricia Sanchez Carballo, Rob E. Aarnoutse, Matthias Merker, Stefan Niemann, Thomas B. Schön, Pia Abel zur Wiesch, Florian P. Maurer, Alain Verstraete, Christoph Lange, Dominik Schwudke, Jim Werngren, Barbara Kalsdorf, Doris Hillemann, Laurent A. Decosterd, Franziska Waldow, Wiebke Knaack
Publikováno v:
Tuberculosis and non-tuberculous mycobacterial diseases.
Autor:
Bhupender Singh, Fabrizio Clarelli, Sören Abel, Ted Cohen, Adam C. Palmer, Silje Lauksund, Pia Abel zur Wiesch, Merete Storflor
Publikováno v:
PLoS Computational Biology, Vol 16, Iss 8, p e1008106 (2020)
PLoS Computational Biology
PLoS Computational Biology
Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputation
Autor:
Ted Cohen, Colin Hemez, Adam C. Palmer, Pia Abel zur Wiesch, Leonid Chindelevitch, Fabrizio Clarelli
Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic’s mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::373d1d99c738a01c1f34fb7ebca8e346
https://doi.org/10.1101/2020.06.01.127571
https://doi.org/10.1101/2020.06.01.127571
Publikováno v:
International Journal of Molecular Sciences
International Journal of Molecular Sciences, Vol 20, Iss 16, p 3965 (2019)
Volume 20
Issue 16
International Journal of Molecular Sciences, Vol 20, Iss 16, p 3965 (2019)
Volume 20
Issue 16
Bacterial heteroresistance (i.e., the co-existence of several subpopulations with different antibiotic susceptibilities) can delay the clearance of bacteria even with long antibiotic exposure. Some proposed mechanisms have been successfully described
Autor:
Sören Abel, Ted Cohen, Pia Abel zur Wiesch, Fabrizio Clarelli, Silje Lauksund, Bhupender Singh, Merete Storflor, Adam C. Palmer
Combatting antibiotic resistance will require both new antibiotics and strategies to preserve the effectiveness of existing drugs. Both approaches would benefit from predicting optimal dosing of antibiotics based on drug-target binding parameters tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01db2bdea87134faca891531a336f95e