Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Fabio Valerio Massoli"'
Publikováno v:
Pattern recognition letters 140 (2020): 222–229. doi:10.1016/j.patrec.2020.10.008
info:cnr-pdr/source/autori:Massoli F.V.; Falchi F.; Amato G./titolo:Cross-resolution face recognition adversarial attacks/doi:10.1016%2Fj.patrec.2020.10.008/rivista:Pattern recognition letters/anno:2020/pagina_da:222/pagina_a:229/intervallo_pagine:222–229/volume:140
info:cnr-pdr/source/autori:Massoli F.V.; Falchi F.; Amato G./titolo:Cross-resolution face recognition adversarial attacks/doi:10.1016%2Fj.patrec.2020.10.008/rivista:Pattern recognition letters/anno:2020/pagina_da:222/pagina_a:229/intervallo_pagine:222–229/volume:140
Face Recognition is among the best examples of computer vision problems where the supremacy of deep learning techniques compared to standard ones is undeniable. Unfortunately, it has been shown that they are vulnerable to adversarial examples - input
Autor:
Hamed Pezeshki, Fabio Valerio Massoli, Arash Behboodi, Taesang Yoo, Arumugam Kannan, Mahmoud Taherzadeh Boroujeni, Qiaoyu Li, Tao Luo, Joseph B. Soriaga
Analog beamforming is the predominant approach for millimeter wave (mmWave) communication given its favorable characteristics for limited-resource devices. In this work, we aim at reducing the spectral efficiency gap between analog and digital beamfo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d79dac937c73bc4d15398496f0693cf
Autor:
Fabio Valerio Massoli, Fabrizio Falchi, Alperen Kantarci, Seymanur Akti, Hazim Kemal Ekenel, Giuseppe Amato
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems 33 (2021): 2313–2323. doi:10.1109/TNNLS.2021.3130074
Anomalies are ubiquitous in all scientific fields and can express an unexpected event due to incomplete knowledge about the data distribution or an unknown process that suddenly comes into play and distorts observations. Due to such events' rarity, t
Publikováno v:
ACM computing surveys (2022). doi:10.1145/3529756
In recent years, Quantum Computing witnessed massive improvements in terms of available resources and algorithms development. The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scienti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee989e99a4296aaaee750dcb04878bcd
Publikováno v:
3rd International Conference on Sensors, Signal and Image Processing, pp. 13–18, Praga, Czech Republic (Virtual), 23-25/10/2020
info:cnr-pdr/source/autori:Amato G.; Falchi F.; Gennaro C.; Massoli F. V.; Vairo C./congresso_nome:3rd International Conference on Sensors, Signal and Image Processing/congresso_luogo:Praga, Czech Republic (Virtual)/congresso_data:23-25%2F10%2F2020/anno:2020/pagina_da:13/pagina_a:18/intervallo_pagine:13–18
SSIP
info:cnr-pdr/source/autori:Amato G.; Falchi F.; Gennaro C.; Massoli F. V.; Vairo C./congresso_nome:3rd International Conference on Sensors, Signal and Image Processing/congresso_luogo:Praga, Czech Republic (Virtual)/congresso_data:23-25%2F10%2F2020/anno:2020/pagina_da:13/pagina_a:18/intervallo_pagine:13–18
SSIP
Smart cameras have recently seen a large diffusion and represent a low-cost solution for improving public security in many scenarios. Moreover, they are light enough to be lifted by a drone. Face recognition enabled by drones equipped with smart came
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f268c0b2478eb4c87c8f4207250021d9
https://dl.acm.org/doi/abs/10.1145/3441233.3441237
https://dl.acm.org/doi/abs/10.1145/3441233.3441237
Publikováno v:
Computer vision and image understanding
202 (2020). doi:10.1016/j.cviu.2020.103103
info:cnr-pdr/source/autori:Massoli F.V.; Carrara F.; Amato G.; Falchi F./titolo:Detection of Face Recognition Adversarial Attacks/doi:10.1016%2Fj.cviu.2020.103103/rivista:Computer vision and image understanding (Print)/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:202
202 (2020). doi:10.1016/j.cviu.2020.103103
info:cnr-pdr/source/autori:Massoli F.V.; Carrara F.; Amato G.; Falchi F./titolo:Detection of Face Recognition Adversarial Attacks/doi:10.1016%2Fj.cviu.2020.103103/rivista:Computer vision and image understanding (Print)/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:202
Deep Learning methods have become state-of-the-art for solving tasks such as Face Recognition (FR). Unfortunately, despite their success, it has been pointed out that these learning models are exposed to adversarial inputs – images to which an impe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fee8d9bc9f7698ad03ed4124446504a5
http://www.sciencedirect.com/science/article/pii/S1077314220301296
http://www.sciencedirect.com/science/article/pii/S1077314220301296
Publikováno v:
Image and vision computing 99 (2020). doi:10.1016/j.imavis.2020.103927
info:cnr-pdr/source/autori:Massoli F.V.; Amato G.; Falchi F./titolo:Cross-resolution learning for face recognition/doi:10.1016%2Fj.imavis.2020.103927/rivista:Image and vision computing/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:99
info:cnr-pdr/source/autori:Massoli F.V.; Amato G.; Falchi F./titolo:Cross-resolution learning for face recognition/doi:10.1016%2Fj.imavis.2020.103927/rivista:Image and vision computing/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:99
Convolutional Neural Network models have reached extremely high performance on the Face Recognition task. Mostly used datasets, such as VGGFace2, focus on gender, pose, and age variations, in the attempt of balancing them to empower models to better
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e632c5c205a1610612f12aab2d3f7861
https://www.sciencedirect.com/science/article/abs/pii/S0262885620300597
https://www.sciencedirect.com/science/article/abs/pii/S0262885620300597
Publikováno v:
Similarity Search and Applications, pp. 352–360, Copenhagen, Denmark, 20/09/2020, 2/10/2020
Similarity Search and Applications ISBN: 9783030609351
SISAP
info:cnr-pdr/source/autori:Massoli F.V.; Falchi F.; Gennaro C.; Amato G./congresso_nome:Similarity Search and Applications/congresso_luogo:Copenhagen, Denmark/congresso_data:20%2F09%2F2020, 2%2F10%2F2020/anno:2020/pagina_da:352/pagina_a:360/intervallo_pagine:352–360
Similarity Search and Applications ISBN: 9783030609351
SISAP
info:cnr-pdr/source/autori:Massoli F.V.; Falchi F.; Gennaro C.; Amato G./congresso_nome:Similarity Search and Applications/congresso_luogo:Copenhagen, Denmark/congresso_data:20%2F09%2F2020, 2%2F10%2F2020/anno:2020/pagina_da:352/pagina_a:360/intervallo_pagine:352–360
Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8d58a5b44637bdd610707418f0f13bb
https://openportal.isti.cnr.it/doc?id=people______::e4532d40a4c067df988d20f74bfa14c2
https://openportal.isti.cnr.it/doc?id=people______::e4532d40a4c067df988d20f74bfa14c2
Publikováno v:
BioFor Workshop on Recent Advances in Digital Security: Biometrics and Forensics, pp. 21–29, Trento, Berlino, 8/9/2019
info:cnr-pdr/source/autori:Massoli F.V.; Amato G.; Falchi F.; Gennaro C.; Vairo C./congresso_nome:BioFor Workshop on Recent Advances in Digital Security: Biometrics and Forensics/congresso_luogo:Trento, Berlino/congresso_data:8%2F9%2F2019/anno:2019/pagina_da:21/pagina_a:29/intervallo_pagine:21–29
New Trends in Image Analysis and Processing – ICIAP 2019 ISBN: 9783030307530
ICIAP Workshops
info:cnr-pdr/source/autori:Massoli F.V.; Amato G.; Falchi F.; Gennaro C.; Vairo C./congresso_nome:BioFor Workshop on Recent Advances in Digital Security: Biometrics and Forensics/congresso_luogo:Trento, Berlino/congresso_data:8%2F9%2F2019/anno:2019/pagina_da:21/pagina_a:29/intervallo_pagine:21–29
New Trends in Image Analysis and Processing – ICIAP 2019 ISBN: 9783030307530
ICIAP Workshops
Convolutional neural networks have reached extremely high performances on the Face Recognition task. These models are commonly trained by using high-resolution images and for this reason, their discrimination ability is usually degraded when they are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b34699e7697c939bceb598338ea60a8f
http://www.cnr.it/prodotto/i/411375
http://www.cnr.it/prodotto/i/411375
Autor:
Anastasios Tefas, Claudio Vairo, Fabio Valerio Massoli, Alessandro Trivilini, Claudio Gennaro, Nikolaos Passalis, Giuseppe Amato, Fabrizio Falchi
Publikováno v:
7th International Symposium on Digital Forensics and Security (ISDFS 2019), Barcelos, Portugal, 10/6/2019, 12/6/2019
info:cnr-pdr/source/autori:Amato G.; Falchi F.; Gennaro C.; Massoli F. V.; Passalis N.; Tefas A.; Trivilini A.; Vairo C./congresso_nome:7th International Symposium on Digital Forensics and Security (ISDFS 2019)/congresso_luogo:Barcelos, Portugal/congresso_data:10%2F6%2F2019, 12%2F6%2F2019/anno:2019/pagina_da:/pagina_a:/intervallo_pagine
ISDFS
info:cnr-pdr/source/autori:Amato G.; Falchi F.; Gennaro C.; Massoli F. V.; Passalis N.; Tefas A.; Trivilini A.; Vairo C./congresso_nome:7th International Symposium on Digital Forensics and Security (ISDFS 2019)/congresso_luogo:Barcelos, Portugal/congresso_data:10%2F6%2F2019, 12%2F6%2F2019/anno:2019/pagina_da:/pagina_a:/intervallo_pagine
ISDFS
In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::698397bbd8e7bbe0fd505bb0c2f83b0b
https://publications.cnr.it/doc/411759
https://publications.cnr.it/doc/411759