Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Fabio Tonini"'
Autor:
Joan Pons-Llopis, Fabio Tonini
Publikováno v:
Le Matematiche, Vol 64, Iss 2, Pp 177-211 (2009)
ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n
Externí odkaz:
https://doaj.org/article/148fce90493b4869873a53226d8e4c45
Publikováno v:
Mathematische Annalen. 383:1-54
In the present paper, we study a purely inseparable counterpart of Abhyankar’s conjecture for the affine line in positive characteristic, and prove its validity for all the finite local non-abelian simple group schemes in characteristic $$p>5$$ . T
We give a proper definition of the multiplicative structure of the following rings: Cox ring of invertible sheaves on a general algebraic stack; Cox ring of rank one reflexive sheaves on a normal and excellent algebraic stack. We show that such Cox r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1e01b2ab0284ad42104d892183fe613
http://hdl.handle.net/2318/1856757
http://hdl.handle.net/2318/1856757
Autor:
Takehiko Yasuda, Fabio Tonini
Publikováno v:
Singularities — Kagoshima 2017.
Autor:
Fabio Tonini, Takehiko Yasuda
Applying the authors' preceding work, we construct a version of the moduli space of $G$-torsors over the formal punctured disk for a finite group $G$. To do so, we introduce two Grothendieck topologies, the sur (surjective) and luin (locally universa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e588eaa230861596d6c5fa7a39d3713e
http://arxiv.org/abs/1909.09276
http://arxiv.org/abs/1909.09276
Berthelot's conjecture predicts that under a proper and smooth morphism of schemes in characteristic $p$, the higher direct images of an overconvergent $F$-isocrystal are overconvergent $F$-isocrystals. In this paper we prove that this is true for cr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d46f15eb4907a5737b314eebe4713fed
http://arxiv.org/abs/1812.05153
http://arxiv.org/abs/1812.05153
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2021, 374 (12), pp.8869-8885. ⟨10.1090/tran/8504⟩
Transactions of the American Mathematical Society, 2021, 374 (12), pp.8869-8885. ⟨10.1090/tran/8504⟩
In this paper we introduce the local Nori fundamental group scheme of a reduced scheme or algebraic stack over a perfect field $k$. We give particular attention to the case of fields: to any field extension $K/k$ we attach a pro-local group scheme ov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ec8e05876292b0916d6dd37c5948c49
http://arxiv.org/abs/1711.06898
http://arxiv.org/abs/1711.06898
Autor:
Fabio Tonini, Takehiko Yasuda
Publikováno v:
Journal of Algebraic Geometry
We construct the moduli stack of torsors over the formal punctured disk in characteristic p > 0 for a finite group isomorphic to the semidirect product of a p-group and a tame cyclic group. We prove that the stack is a limit of separated Deligne-Mumf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c599e843b71cd1b1566ac99be76d398
http://arxiv.org/abs/1709.01705
http://arxiv.org/abs/1709.01705
Autor:
Fabio Tonini
Publikováno v:
Università degli studi di Firenze-IRIS
Fabio Tonini
Fabio Tonini
We interpret Galois covers in terms of particular monoidal functors, extending the correspondence between torsors and fiber functors. As applications we characterize tame $G$-covers between normal varieties for finite and \'etale group schemes and we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::133118eb8de3b236ea0a67f0c76a703f
http://hdl.handle.net/2158/1156897
http://hdl.handle.net/2158/1156897
Publikováno v:
Selecta Mathematica, vol.25(2), pp.1-35
Kérwá
Universidad de Costa Rica
instacron:UCR
Selecta Mathematica, vol.25(18), pp.1-37
Kérwá
Universidad de Costa Rica
instacron:UCR
Selecta Mathematica, vol.25(18), pp.1-37
We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack X over a field k. This is done by describing the Nori fundamental gerbe of an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ca40c40a35c4287e718f20ca2a794d5e