Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Fabio Fajardo Molinares"'
Autor:
Paulo H. S. M. Azevedo, Silvio Cabral Patricio, Alessandro José Queiroz Sarnaglia, Fabio Fajardo Molinares
Publikováno v:
IEEE Transactions on Biomedical Engineering. 68:3281-3289
Objective: Some proposals for oxygen uptake plateau identification are based on linear regression adaptations. However, linear regression does not adequately explain the oxygen uptake nonlinear dynamics. Recently, segmented regression was considered
Publikováno v:
Journal of Statistical Computation and Simulation. 88:3338-3348
In this paper, we introduce a new non-negative integer-valued autoregressive time series model based on a new thinning operator, so called generalized zero-modified geometric (GZMG) thinning operat...
Autor:
Glaura C. Franco, Adriano Marcio Sgrancio, Flávio Augusto Ziegelmann, Pascal Bondon, Fabio Fajardo Molinares, Bovas Abraham, Valdério Anselmo Reisen, Edson Zambon Monte
Publikováno v:
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation, Elsevier, 2018, 146, pp.27-43. ⟨10.1016/j.matcom.2017.10.004⟩
Mathematics and Computers in Simulation, Elsevier, 2018, 146, pp.27-43. ⟨10.1016/j.matcom.2017.10.004⟩
This paper deals with the estimation of seasonal long-memory time series models in the presence of ‘outliers’. It is long known that the presence of outliers can lead to undesirable effects on the statistical estimation methods, for example, subs
Publikováno v:
Australian & New Zealand Journal of Statistics. 59:137-150
Publikováno v:
Statistics & Probability Letters. 119:264-272
In this paper, we propose a new stationary first-order non-negative integer valued autoregressive [INAR(1)] process with geometric marginals based on a modified version of the binomial thinning operator. This new process will enable one to tackle the
Publikováno v:
Journal of Statistical Planning and Inference. 139:2511-2525
In this paper, we introduce an alternative semiparametric estimator of the fractional differencing parameter in ARFIMA models which is robust against additive outliers. The proposed estimator is a variant of the GPH estimator [Geweke, J., Porter-Huda
Publikováno v:
Revista Brasileira de Recursos Hídricos. 13:45-53