Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Fabio, Zanolin"'
Autor:
Oltiana Gjata, Fabio Zanolin
Publikováno v:
Contemporary Mathematics. :249-269
In this paper we present a new application of the Melnikov method to a class of periodically perturbed Duffing equations where the nonlinearity is non-smooth as otherwise required in the classical applications. Extensions of the Melnikov method to th
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 55, Pp 1-10 (2018)
The problem of the uniqueness of limit cycles for Liénard systems is investigated in connection with the properties of the function $F(x)$. When $\alpha$ and $\beta$~$(\alpha
Externí odkaz:
https://doaj.org/article/d93b35a492a642e3968dc195f0a5fac4
We investigate the existence of positive solutions for a class of Minkowski-curvature equations with indefinite weight and nonlinear term having superlinear growth at zero and super-exponential growth at infinity. As an example, for the equation \beg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9fae1725e3aa7ee08c1c521407af138a
https://hdl.handle.net/2318/1887977
https://hdl.handle.net/2318/1887977
Autor:
Chiara Zanini, Fabio Zanolin
Publikováno v:
Complexity, Vol 2018 (2018)
We prove the existence and multiplicity of periodic solutions as well as solutions presenting a complex behavior for the one-dimensional nonlinear Schrödinger equation -ε2u′′+V(x)u=f(u), where the potential V(x) approximates a two-step function
Externí odkaz:
https://doaj.org/article/32da4eb8dd194d17a333d70a870fa2c6
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 163-183 (2021)
This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with theϕ-Laplacian equation(ϕ(u′))′+a(t)g(u)=0,(\phi \left(u^{\prime} ))^{\prime} +a\left(t)g\left(u)=0,whereϕis a h
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:2393-2419
This paper studies the existence of subharmonics of arbitrary order in a generalized class of non-autonomous predator-prey systems of Volterra type with periodic coefficients. When the model is non-degenerate it is shown that the Poincare–Birkhoff
Publikováno v:
Carletti, T, Villari, G & Zanolin, F 2022, ' Existence of harmonic solutions for some generalisation of the non-autonomous Liénard equations ', Monatshefte für Mathematik, vol. 199, no. 2, pp. 243-257 . https://doi.org/10.1007/s00605-021-01652-3
We study the problem of existence of harmonic solutions for some generalisations of the periodically perturbed Liénard equation, where the damping function depends both on the position and the velocity. In the associated phase-space this corresponds
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51805c82aced186aa042eb48aa368ed4
https://pure.unamur.be/ws/files/62313822/CarlettiVillariZanolinNonAuto_1.pdf
https://pure.unamur.be/ws/files/62313822/CarlettiVillariZanolinNonAuto_1.pdf
Autor:
Guglielmo Feltrin, Fabio Zanolin
We show the direct applicability of the Brouwer fixed point theorem for the existence of equilibrium points and periodic solutions for differential systems on general domains satisfying geometric conditions at the boundary. We develop a general appro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72087a16e78482cb29189d066d2074cb
http://hdl.handle.net/11390/1232933
http://hdl.handle.net/11390/1232933
We deal with a planar differential system of the form \begin{equation*} \begin{cases} \, u' = h(t,v), \\ \, v' = - \lambda a(t) g(u), \end{cases} \end{equation*} where $h$ is $T$-periodic in the first variable and strictly increasing in the second va
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b50fd2c584deb721155ad245c89bd6f