Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Fabien Pazuki"'
Autor:
Fabien Pazuki
Publikováno v:
Contemporary Mathematics. :253-266
Autor:
Fabien Pazuki, Andrea Basso
Publikováno v:
Basso, A & Pazuki, F 2022, ' On the supersingular GPST attack ', Journal of Mathematical Cryptology, vol. 16, no. 1, pp. 14-19 . https://doi.org/10.1515/jmc-2021-0020
Journal of Mathematical Cryptology, Vol 16, Iss 1, Pp 14-19 (2021)
Journal of Mathematical Cryptology, Vol 16, Iss 1, Pp 14-19 (2021)
The main attack against static-key supersingular isogeny Diffie–Hellman (SIDH) is the Galbraith–Petit–Shani–Ti (GPST) attack, which also prevents the application of SIDH to other constructions such as non-interactive key-exchange. In this pap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0feb9351d9908d02b6c3a83894e3b89a
https://curis.ku.dk/ws/files/284298954/On_the_supersingular_GPST_attack.pdf
https://curis.ku.dk/ws/files/284298954/On_the_supersingular_GPST_attack.pdf
Autor:
Fabien Pazuki
Publikováno v:
Pazuki, F 2022 ' The regulator dominates the rank ' arXiv preprint .
University of Copenhagen
University of Copenhagen
After noticing that the regulator of a number field dominates the rank of its group of units, we bound from below the regulator of the Mordell-Weil group of elliptic curves over global function fields of characteristic p ≥ 5 p\geq 5 . The lower bou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9363e5e84778fcfc7ca5d59e06352fa5
https://curis.ku.dk/portal/da/publications/the-regulator-dominates-the-rank(ddeaa499-ed59-4bd2-915c-85339630d39b).html
https://curis.ku.dk/portal/da/publications/the-regulator-dominates-the-rank(ddeaa499-ed59-4bd2-915c-85339630d39b).html
Autor:
Martin Widmer, Fabien Pazuki
Publikováno v:
Research in Number Theory. 7
We prove a new Bertini-type Theorem with explicit control of the genus, degree, height, and the field of definition of the constructed curve. As a consequence we provide a general strategy to reduce certain height and rank estimates on abelian variet
Autor:
Fabien Pazuki, Richard Griffon
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an "isogeny estimate", providing an explicit bound on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f488271e0341df1d6d64ec585cbc39e
http://arxiv.org/abs/2005.02920
http://arxiv.org/abs/2005.02920
Autor:
Philipp Habegger, Fabien Pazuki
Publikováno v:
Compositio Mathematica. 153:2534-2576
We show that a genus $2$ curve over a number field whose jacobian has complex multiplication will usually have stable bad reduction at some prime. We prove this by computing the Faltings height of the jacobian in two different ways. First, we use a k
We provide explicit bounds on the difference of heights of isogenous Drinfeld modules. We derive a finiteness result in isogeny classes. In the rank 2 case, we also obtain an explicit upper bound on the size of the coefficients of modular polynomials
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::73816ec98a5263871e23176a9856c557
http://arxiv.org/abs/1908.03485
http://arxiv.org/abs/1908.03485
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2018, ⟨10.1093/imrn/rny285⟩
Autissier, P, Hindry, M & Pazuki, F 2021, ' Regulators of Elliptic Curves ', International Mathematics Research Notices, vol. 2021, no. 7, pp. 4976–4993 . https://doi.org/10.1093/imrn/rny285
International Mathematics Research Notices, Oxford University Press (OUP), 2018, ⟨10.1093/imrn/rny285⟩
Autissier, P, Hindry, M & Pazuki, F 2021, ' Regulators of Elliptic Curves ', International Mathematics Research Notices, vol. 2021, no. 7, pp. 4976–4993 . https://doi.org/10.1093/imrn/rny285
We study the regulator of the Mordell–Weil group of elliptic curves over number fields, functions fields of characteristic 0 or function fields of characteristic $p>0$. We prove a new Northcott property for the regulator of elliptic curves of rank
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cfbaa405ba01180b489aa51b72f6456f
http://arxiv.org/abs/1805.03484
http://arxiv.org/abs/1805.03484
Autor:
Fabien Pazuki
Publikováno v:
Pazuki, F 2019, ' Modular invariants and isogenies ', International Journal of Number Theory, vol. 15, no. 3, pp. 569-584 . https://doi.org/10.1142/S1793042119500295
We provide explicit bounds on the difference of heights of the [Formula: see text]-invariants of isogenous elliptic curves defined over [Formula: see text]. The first one is reminiscent of a classical estimate for the Faltings height of isogenous abe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ccf3e4a5f7a4b557a2b773c1d1bd15fc
http://arxiv.org/abs/1611.01094
http://arxiv.org/abs/1611.01094
Autor:
Fabien Pazuki
Publikováno v:
Journal de Théorie des Nombres de Bordeaux
Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2010, 22 (1), pp.161-179
Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2010, 22 (1), pp.161-179
Le but de cet article est d'etudier une conjecture de Lang enoncee sur les courbes elliptiques dans un livre de Serge Lang, puis generalisee aux varietes abeliennes de dimension superieure dans un article de Joseph Silverman. On donne un resultat asy