Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Fabian Balsiger"'
Publikováno v:
JMIR Formative Research, Vol 6, Iss 4, p e32287 (2022)
BackgroundBiomedical research requires health care institutions to provide sensitive clinical data to leverage data science and artificial intelligence technologies. However, providing researchers access to health care data in a simple and secure man
Externí odkaz:
https://doaj.org/article/564d516987ba4fe687502b52107e6150
Autor:
Fabian Balsiger, Benedikt Wagner, Johann M. E. Jende, Benjamin Marty, Martin Bendszus, Olivier Scheidegger, Felix T. Kurz
Publikováno v:
Methods and Protocols, Vol 5, Iss 3, p 39 (2022)
Magnetic resonance neurography (MRN), the MR imaging of peripheral nerves, is clinically used for assessing and monitoring peripheral neuropathies based on qualitative, weighted MR imaging. Recently, quantitative MRN has been increasingly reported wi
Externí odkaz:
https://doaj.org/article/a0ad182509a4405aba649d6d9eacfe09
Publikováno v:
Frontiers in Neuroscience, Vol 14 (2020)
Automatic segmentation of brain tumors has the potential to enable volumetric measures and high-throughput analysis in the clinical setting. Reaching this potential seems almost achieved, considering the steady increase in segmentation accuracy. Howe
Externí odkaz:
https://doaj.org/article/f7cc5cf22cb644a2af5b155d582b0b73
Autor:
Fabian Balsiger, Carolin Steindel, Mirjam Arn, Benedikt Wagner, Lorenz Grunder, Marwan El-Koussy, Waldo Valenzuela, Mauricio Reyes, Olivier Scheidegger
Publikováno v:
Frontiers in Neurology, Vol 9 (2018)
Diagnosis of peripheral neuropathies relies on neurological examinations, electrodiagnostic studies, and since recently magnetic resonance neurography (MRN). The aim of this study was to develop and evaluate a fully-automatic segmentation method of p
Externí odkaz:
https://doaj.org/article/14679ec3e7ee4527bbd9796a0a0e58dc
Autor:
Florian Kofler, Ivan Ezhov, Fabian Isensee, Fabian Balsiger, Christoph Berger, Maximilian Koerner, Beatrice Demiray, Julia Rackerseder, Johannes Paetzold, Hongwei Li, Suprosanna Shit, Richard McKinley, Marie Piraud, Spyridon Bakas, Claus Zimmer, Nassir Navab, Jan Kirschke, Benedikt Wiestler, Bjoern Menze
Publikováno v:
Machine Learning for Biomedical Imaging. 2:27-71
Metrics optimized in complex machine learning tasks are often selected in an ad-hoc manner. It is unknown how they align with human expert perception. We explore the correlations between established quantitative segmentation quality metrics and quali
Publikováno v:
Locher, Noah; Wagner, Benedikt; Balsiger, Fabian; Scheidegger, Olivier (2022). Quantitative water T2 relaxometry in the early detection of neuromuscular diseases: a retrospective biopsy-controlled analysis. European radiology, 32(11), pp. 7910-7917. Springer 10.1007/s00330-022-08862-9
Objectives To assess quantitative water T2 relaxometry for the early detection of neuromuscular diseases (NMDs) in comparison to standard qualitative MR imaging in a clinical setting. Methods This retrospective study included 83 patients with suspect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b8bf87c498f776de23ce2d8ac331d36
BACKGROUND Biomedical research requires health care institutions to provide sensitive clinical data to leverage data science and artificial intelligence technologies. However, providing researchers access to health care data in a simple and secure ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::80e24169c5dd31516a2febfa4c4cd712
https://doi.org/10.2196/preprints.32287
https://doi.org/10.2196/preprints.32287
Publikováno v:
JMIR formative research. 6(4)
Background Biomedical research requires health care institutions to provide sensitive clinical data to leverage data science and artificial intelligence technologies. However, providing researchers access to health care data in a simple and secure ma
Autor:
Fabian Balsiger, Benjamin Marty, Mauricio Reyes, Olivier Scheidegger, Alain Jungo, Pierre G. Carlier
Publikováno v:
Medical Image Analysis
Medical Image Analysis, Elsevier, 2020, 64, pp.101741-. ⟨10.1016/j.media.2020.101741⟩
Balsiger, Fabian; Jungo, Alain; Scheidegger, Olivier; Carlier, Pierre G; Reyes, Mauricio; Marty, Benjamin (2020). Spatially regularized parametric map reconstruction for fast magnetic resonance fingerprinting. Medical image analysis, 64(101741), p. 101741. Elsevier 10.1016/j.media.2020.101741
Medical Image Analysis, 2020, 64, pp.101741. ⟨10.1016/j.media.2020.101741⟩
Medical Image Analysis, Elsevier, 2020, 64, pp.101741-. ⟨10.1016/j.media.2020.101741⟩
Balsiger, Fabian; Jungo, Alain; Scheidegger, Olivier; Carlier, Pierre G; Reyes, Mauricio; Marty, Benjamin (2020). Spatially regularized parametric map reconstruction for fast magnetic resonance fingerprinting. Medical image analysis, 64(101741), p. 101741. Elsevier 10.1016/j.media.2020.101741
Medical Image Analysis, 2020, 64, pp.101741. ⟨10.1016/j.media.2020.101741⟩
Magnetic resonance fingerprinting (MRF) provides a unique concept for simultaneous and fast acquisition of multiple quantitative MR parameters. Despite acquisition efficiency, adoption of MRF into the clinics is hindered by its dictionary matching-ba
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bcf710eca9dca7160a468db12469c90
https://hal.archives-ouvertes.fr/hal-03490848
https://hal.archives-ouvertes.fr/hal-03490848
Publikováno v:
Jungo, Alain; Scheidegger, Olivier; Reyes, Mauricio; Balsiger, Fabian (2021). pymia: A Python package for data handling and evaluation in deep learning-based medical image analysis. Computer methods and programs in biomedicine, 198, p. 105796. Elsevier 10.1016/j.cmpb.2020.105796
Background and Objective: Deep learning enables tremendous progress in medical image analysis. One driving force of this progress are open-source frameworks like TensorFlow and PyTorch. However, these frameworks rarely address issues specific to the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f37373cde738a956ec559b2ee96a3ab