Zobrazeno 1 - 10
of 41 376
pro vyhledávání: '"Faber P"'
Autor:
Wang, Hongyu, Hou, Xinmin
The Faber-Krahn inequality states that the first Dirichlet eigenvalue among all bounded domains is no less than a Euclidean ball with the same volume in $\mathbb{R}^n$ \cite{Chavel FB}. B{\i}y{\i}ko\u{g}lu and Leydold (J. Comb. Theory, Ser. B., 2007)
Externí odkaz:
http://arxiv.org/abs/2410.17630
Autor:
Rose, Christian
We investigate the equivalence of relative Faber-Krahn inequalities and the conjunction of Gaussian upper heat kernel bounds and volume doubling on large scales on graphs. For the normalizing measure, we obtain their equivalence up to constants by im
Externí odkaz:
http://arxiv.org/abs/2410.11715
Autor:
Qiu, Congling
A result of Green and Griffiths states that for the generic curve $C$ of genus $g \geq 4$ with the canonical divisor $K$, its Faber--Pandharipande 0-cycle $K\times K-(2g-2)K_\Delta$ on $C\times C$ is nontorsion in the Chow group of rational equivalen
Externí odkaz:
http://arxiv.org/abs/2409.08989
We consider a natural eigenvalue problem for the vector Laplacian related to stationary Maxwell's equations in a cavity and we prove that an analog of the celebrated Faber-Krahn inequality doesn't hold.
Comment: references added; 9 pages, 2 figu
Comment: references added; 9 pages, 2 figu
Externí odkaz:
http://arxiv.org/abs/2409.07206
Autor:
Hamel, François, Russ, Emmanuel
We prove a Faber-Krahn inequality for the Laplacian with drift under Robin boundary condition, provided that the $\beta$ parameter in the Robin condition is large enough. The proof relies on a compactness argument, on the convergence of Robin eigenva
Externí odkaz:
http://arxiv.org/abs/2405.12148
Autor:
Soares, Rafael D., Schirò, Marco
Publikováno v:
SciPost Phys. 17, 128 (2024)
Efficient numerical methods are still lacking to probe the unconventional dynamics of quantum many-body systems under non-unitary evolution. In this work, we use Faber polynomials to numerically simulate both the dynamics of non-Hermitian systems and
Externí odkaz:
http://arxiv.org/abs/2406.10135
Autor:
Bogosel, Beniamin, Bucur, Dorin
The main result of the paper shows that the regular $n$-gon is a local minimizer for the first Dirichlet-Laplace eigenvalue among $n$-gons having fixed area for $n \in \{5,6\}$. The eigenvalue is seen as a function of the coordinates of the vertices
Externí odkaz:
http://arxiv.org/abs/2406.11575
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sadhu, Pradyumna, Tian, Yong
Publikováno v:
Monthly Notices of the Royal Astronomical Society, Volume 528, Issue 4, March 2024, Pages 5612-5623
We investigate the Baryonic Faber-Jackson Relation (BFJR), examining the correlation between baryonic mass and velocity dispersion in galaxy groups and clusters. Originally analysed in elliptical galaxies, the BFJR is derivable from the empirical Rad
Externí odkaz:
http://arxiv.org/abs/2402.13320
The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial) incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality conditions and we prove the following surpri
Externí odkaz:
http://arxiv.org/abs/2401.09801