Zobrazeno 1 - 10
of 100
pro vyhledávání: '"FRONCEK, DALIBOR"'
Autor:
Agrahari, Gyaneshwar, Froncek, Dalibor
A graph $G(V,E)$ is $\Gamma$-harmonious when there is an injection $f$ from $V$ to an Abelian group $\Gamma$ such that the induced edge labels defined as $w(xy)=f(x)+f(y)$ form a bijection from $E$ to $\Gamma$. We study $\Gamma$-harmonious labelings
Externí odkaz:
http://arxiv.org/abs/2403.14098
Autor:
Froncek, Dalibor
A supermagic labeling (often also called supermagic labeling) of a graph $G(V,E)$ with $|E|=k$ is a bijection from $E$ to the set of first $k$ positive integers such that the sum of labels of all incident edges of every vertex $x\in V$ is equal to th
Externí odkaz:
http://arxiv.org/abs/2212.14836
Publikováno v:
Discrete Mathematics 343 (2020)
Let $G=(V,E)$ be a graph and $\Gamma $ an Abelian group both of order $n$. A $\Gamma$-distance magic labeling of $G$ is a bijection $\ell \colon V\rightarrow \Gamma $ for which there exists $\mu \in \Gamma $ such that $% \sum_{x\in N(v)}\ell (x)=\mu
Externí odkaz:
http://arxiv.org/abs/1905.04946
A nearly platonic graph is a k-regular simple planar graph in which all but a small number of the faces have the same degree. We show that it is impossible for a finite graph to have exactly one disparate face, and offer some conjectures, including t
Externí odkaz:
http://arxiv.org/abs/1608.00079
Publikováno v:
In Discrete Mathematics May 2020 343(5)
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 2, Pp 533-546 (2019)
Let G = (V, E) be a graph of order n. A distance magic labeling of G is a bijection ℓ: V → {1, 2, . . ., n} for which there exists a positive integer k such that ∑x∈N(v)ℓ(x) = k for all v ∈ V, where N(v) is the open neighborhood of v.
Externí odkaz:
https://doaj.org/article/d87764b1c65947929cadfa55990c1f5b
A graph $G(V,E)$ of order $|V|=p$ and size $|E|=q$ is called super edge-graceful if there is a bijection $f$ from $E$ to $\{0,\pm 1,\pm 2,...,\pm \frac{q-1}{2}\}$ when $q$ is odd and from $E$ to $\{\pm 1,\pm 2,...,\pm \frac{q}{2}\}$ when $q$ is even
Externí odkaz:
http://arxiv.org/abs/0804.3640
Publikováno v:
In Discrete Mathematics 6 January 2017 340(1):3117-3124
Autor:
Froncek Dalibor
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 1, Pp 55-62 (2017)
Häggkvist [6] proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K6n,6n. In [1] Cichacz and Froncek established a necessary and sufficient condition for t
Externí odkaz:
https://doaj.org/article/ad5e18e0ec8c4ad9b589c50c48df0d23
Autor:
Froncek, Dalibor
Publikováno v:
In AKCE International Journal of Graphs and Combinatorics April 2016 13(1):85-89