Zobrazeno 1 - 10
of 69
pro vyhledávání: '"FROLOV, Andrei N."'
Autor:
Frolov, Andrei N.
We derive new variants of the quantitative Borel--Cantelli lemma and apply them to analysis of statistical properties for some dynamical systems. We consider intermittent maps of $(0,1]$ which have absolutely continuous invariant probability measures
Externí odkaz:
http://arxiv.org/abs/2101.05586
Autor:
Frolov, Andrei N.
We derive new upper and lower bounds for probabilities that $r$ or at least $r$ from $n$ events occur. These bounds can turn to equalities. The method is discussed as well. It works for measurable space and measures with sign, too. We also discuss va
Externí odkaz:
http://arxiv.org/abs/2008.03588
Autor:
Frolov, Andrei N.
We investigate asymptotic behaviour of probabilities of large deviations for normalized combinatorial sums. We find a zone in which these probabilities are equivalent to the tail of the standard normal law. Our conditions are similar to the classical
Externí odkaz:
http://arxiv.org/abs/1901.04244
Autor:
Frolov, Andrei N.
We obtain new lower and upper bounds for probabilities of unions of events.These bounds are sharp. They are stronger than earlier ones. General bounds maybe applied in arbitrary measurable spaces.We have improved the method that has been introduced i
Externí odkaz:
http://arxiv.org/abs/1408.3755
Autor:
Frolov, Andrei N.
We derive new bounds of the remainder in a combinatorial central limit theorem without assumptions on independence and existence of moments of summands. For independent random variables our theorems imply Esseen and Berry-Esseen type inequalities, so
Externí odkaz:
http://arxiv.org/abs/1405.1670
Autor:
Frolov, Andrei N.
Publikováno v:
J. Statist. Planning and Inference, 2014, v.149, 90-97
We derive Esseen type bounds of the remainder in a combinatorial central limit theorem for independent random variables without third moments.
Externí odkaz:
http://arxiv.org/abs/1306.2236
Autor:
Frolov, Andrei N.
Publikováno v:
Central European J. of Math., 2013, V. 11, I. 12, 2089-2098
We derive logarithmic asymptotics of probabilities of small deviations for iterated processes in the space of trajectories. We find conditions under which these asymptotics coincide with those of processes generating iterated processes. When these co
Externí odkaz:
http://arxiv.org/abs/1208.6148
Autor:
Zhukovskaya, Marianna I., Grushevaya, Inna V., Miltsen, Alexander A., Selitskaya, Oksana G., Shchenikova, Anna V., Frolov, Andrei N., Tóth, Miklós
Publikováno v:
Acta Phytopathologica et Entomologica Hungarica; Jun2024, Vol. 59 Issue 1, p108-120, 13p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Frolov, Andrei N.
Publikováno v:
In Statistics and Probability Letters June 2021 173