Zobrazeno 1 - 10
of 40
pro vyhledávání: '"FRANKIEWICZ, Ryszard"'
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
It is proved that $P(\omega)/\triangle_d$, where $\triangle_d$ is the ideal of sets of asymptotic density zero, is universal in the sense of embeddings.
Externí odkaz:
http://arxiv.org/abs/2107.07433
In this paper we present a simple proof of Gowers Dichotomy which states that every infinite dimensional Banach Space has a subspace which either contains an unconditional basic sequence or is hereditarily indecomposable. Our approach is purely combi
Externí odkaz:
http://arxiv.org/abs/2106.10728
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
In this note we give equivalence of the existence of K-partitions with the existence of the precipitous ideal which is essentially topological. This way we strengthen the main result of Frankiewczi and Kunen (1987).
Comment: arXiv admin note: te
Comment: arXiv admin note: te
Externí odkaz:
http://arxiv.org/abs/2010.10445
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
We investigate the properties of ideals associated with Kuratowski partitions of non-complete Baire metric spaces. We show that such an ideal can be precipitous.
Externí odkaz:
http://arxiv.org/abs/2003.10307
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
The main result of this paper is to show that, if $\kappa$ is the smallest real-valued measurable cardinal not greater than $ 2^{\aleph_0}$, then there exists a complete metric space of cardinality not greater than $ 2^{\kappa}$ admitting a Kuratowsk
Externí odkaz:
http://arxiv.org/abs/2003.11017
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
In 1935 K. Kuratowski posed the problem whether a function f:X ! Y , (X is completely metrizable and Y is metrizable), with the property that a preimage of each open has the Baire property, is continuous apart from a meager set. This paper is a selec
Externí odkaz:
http://arxiv.org/abs/1706.08864
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
In this paper there is proved without any metamathematical techniques that the existence of precipitous ideals immediately follows from Kuratowski partitions.
Externí odkaz:
http://arxiv.org/abs/1706.08849
Autor:
Frankiewicz, Ryszard, Jureczko, Joanna
We show that large sets in Ellentuck topology (i.e. sets which are not nowhere Ramsey) do not admit Kuratowski's partition. The similar result is true for the Sacks real forcing.
Externí odkaz:
http://arxiv.org/abs/1706.08831
A combinatorial proof of a pigeonhole principle of Gowers is found along with its symmetric and approximate version, FIN$_k^\pm$ theorem. The proofs do not use of the concept of ultrafilter.
Comment: An error in Lemma 1
Comment: An error in Lemma 1
Externí odkaz:
http://arxiv.org/abs/1402.6264
Autor:
HOŁUBOWSKI, Waldemar1 waldemar.holubowski@polsl.pl, FRANKIEWICZ, Ryszard1 ryszard.frankiewicz@polsl.pl, KUSIŃSKI, Sławomir1 slawomir.kusinski@polsl.pl, SIKORA, Andrzej2 andrzej.sikora@polsl.pl, ZIELONKA, Adam1 adam.zielonka@polsl.pl
Publikováno v:
Transport Problems: an International Scientific Journal. 2023, Vol. 18 Issue 1, p103-115. 13p.