Zobrazeno 1 - 10
of 17
pro vyhledávání: '"FLORIAN HERZIG"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently
Externí odkaz:
https://doaj.org/article/a4eda592221842a6bee80ffc014f65df
Autor:
Christophe Breuil, Florian Herzig
Publikováno v:
International Mathematics Research Notices. 2020:10495-10552
Let $L$ be a finite extension of ${\mathbb{Q}}_p$ and $n\geq 2$. We associate to a crystabelline $n$-dimensional representation of ${\operatorname{Gal}}(\overline L/L)$ satisfying mild genericity assumptions a finite length locally ${\mathbb{Q}}_p$-a
Publikováno v:
Compositio Mathematica. 153:2215-2286
Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\
Publikováno v:
Journal of the European Mathematical Society. 19:1231-1291
The notion of adequate subgroups was introduced by Jack Thorne [59]. It is a weakening of the notion of big subgroups used by Wiles and Taylor in proving automorphy lifting theorems for certain Galois representations. Using this idea, Thorne was able
Publikováno v:
Forum of Mathematics, Sigma
Forum of Mathematics, Sigma, Cambridge University press, 2020, 8, pp.e2. ⟨10.1017/fms.2019.50⟩
Forum of Mathematics, Sigma, Cambridge University press, 2020, 8, pp.e2. ⟨10.1017/fms.2019.50⟩
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_p$, and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9212130d4fbd319fdd781559907cf36b
http://arxiv.org/abs/1905.00053
http://arxiv.org/abs/1905.00053
Publikováno v:
Journal of the American Mathematical Society. 30:495-559
Let F be a locally compact non-archimedean field, p its residue characteristic, and G a connected reductive group over F. Let C an algebraically closed field of characteristic p. We give a complete classification of irreducible admissible C-represent
Autor:
Florian Herzig
Publikováno v:
Inventiones mathematicae. 186:373-434
Let F be a finite extension of Q_p. Using the mod p Satake transform, we define what it means for an irreducible admissible smooth representation of an F-split p-adic reductive group over \bar F_p to be supersingular. We then give the classification
We formulate a number of related generalisations of the weight part of Serre's conjecture to the case of GL(n) over an arbitrary number field, motivated by the formalism of the Breuil-M\'ezard conjecture. We give evidence for these conjectures, and d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f700a34ce34f5bb132b8a4758d216aa
http://arxiv.org/abs/1509.02527
http://arxiv.org/abs/1509.02527
Autor:
Florian Herzig
Publikováno v:
Modular Representation Theory of Finite and p-Adic Groups
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ffd3fd913a273157233de1730ee36a34
https://doi.org/10.1142/9789814651813_0003
https://doi.org/10.1142/9789814651813_0003
Publikováno v:
The Mathematical Gazette. 82:139-142