Zobrazeno 1 - 10
of 123
pro vyhledávání: '"FLOREA, Alexandra"'
We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta-function averaged over a subfamily of zeros of the zeta function which is expected to have full density inside the set of all zeros. For $k\leq 1/2
Externí odkaz:
http://arxiv.org/abs/2310.03949
We compute moments of $L$-functions associated to the polynomial family of Artin--Schreier covers over $\mathbb{F}_q$, where $q$ is a power of a prime $p>2$, when the size of the finite field is fixed and the genus of the family goes to infinity. Mor
Externí odkaz:
http://arxiv.org/abs/2306.16487
Autor:
Bui, Hung M., Florea, Alexandra
Assuming the Riemann Hypothesis we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in $\zeta(s)$. For example, integrating $|\zeta(1/2+\alpha+it)|^{-2k}$ with respect to $t$ from $T$ t
Externí odkaz:
http://arxiv.org/abs/2302.07226
We study the asymptotic count of dihedral quartic extensions over a fixed number field with bounded norm of the relative discriminant. The main term of this count (including a summation formula for the constant) can be found in the literature (see Co
Externí odkaz:
http://arxiv.org/abs/2209.13579
Autor:
Florea, Alexandra
We consider negative moments of quadratic Dirichlet $L$--functions over function fields. Summing over monic square-free polynomials of degree $2g+1$ in $\mathbb{F}_q[x]$, we obtain an asymptotic formula for the $k^{\text{th}}$ shifted negative moment
Externí odkaz:
http://arxiv.org/abs/2111.10477
We prove special cases of the Ratios Conjecture for the family of quadratic Dirichlet $L$--functions over function fields. More specifically, we study the average of $L(1/2+\alpha,\chi_D)/L(1/2+\beta,\chi_D)$, when $D$ varies over monic, square-free
Externí odkaz:
http://arxiv.org/abs/2109.10396
Autor:
Carneiro, Emanuel, Das, Mithun Kumar, Florea, Alexandra, Kumchev, Angel V., Malik, Amita, Milinovich, Micah B., Turnage-Butterbaugh, Caroline, Wang, Jiuya
Publikováno v:
J. Funct. Anal. 281 (2021), no. 9, Paper No. 109199
We improve the current bounds for an inequality of Erd\H{o}s and Tur\'an from 1950 related to the discrepancy of angular equidistribution of the zeros of a given polynomial. Building upon a recent work of Soundararajan, we establish a novel connectio
Externí odkaz:
http://arxiv.org/abs/2104.00105
Autor:
Dobrota, Cristina Teodora1,2 (AUTHOR) cristina.dobrota@ubbcluj.ro, Florea, Alexandra-Diana1 (AUTHOR) diana_florea03@yahoo.com, Racz, Csaba-Pal1 (AUTHOR) csaba.racz@ubbcluj.ro, Tomoaia, Gheorghe3,4 (AUTHOR) tomoaia2000@yahoo.com, Soritau, Olga5 (AUTHOR) olgasoritau@yahoo.com, Avram, Alexandra1 (AUTHOR) alexandra.avram@ubbcluj.ro, Benea, Horea-Rares-Ciprian3 (AUTHOR), Rosoiu, Cristina Lavinia2 (AUTHOR), Mocanu, Aurora1 (AUTHOR) aurora.mocanu@ubbcluj.ro, Riga, Sorin1,4 (AUTHOR) d_s_riga@yahoo.com, Kun, Attila-Zsolt1 (AUTHOR) attila.kun@ubbcluj.ro, Tomoaia-Cotisel, Maria1,4 (AUTHOR) maria.tomoaia@ubbcluj.ro
Publikováno v:
Materials (1996-1944). May2024, Vol. 17 Issue 9, p2038. 18p.
We prove that there is a positive proportion of $L$-functions associated to cubic characters over $\mathbb{F}_q[T]$ that do not vanish at the critical point $s=1/2$. This is achieved by computing the first mollified moment using techniques previously
Externí odkaz:
http://arxiv.org/abs/2006.15661
Using the Ratios Conjecture, we write down precise formulas with lower order terms for the one and the two level densities of zeros of quadratic Dirichlet $L$--functions over function fields. We denote the various terms arising as Type-$0$, Type-I an
Externí odkaz:
http://arxiv.org/abs/2001.03265