Zobrazeno 1 - 10
of 26
pro vyhledávání: '"FERGUS FLEMING"'
Autor:
Joji Tokita, David Lam, Aida Vega, Stephanie Wang, Leonard Amoruso, Tamara Muller, Nidhi Naik, Shivani Rathi, Sharlene Martin, Azadeh Zabetian, Catherine Liu, Catherine Sinfield, Tony McNicholas, Fergus Fleming, Steven G. Coca, Girish N Nadkarni, Roger Tun, Mike Kattan, Michael J. Donovan, Arshad K. Rahim
Publikováno v:
Journal of Primary Care & Community Health, Vol 15 (2024)
Introduction/Objective: The KidneyIntelX is a multiplex, bioprognostic, immunoassay consisting of 3 plasma biomarkers and clinical variables that uses machine learning to predict a patient’s risk for a progressive decline in kidney function over 5
Externí odkaz:
https://doaj.org/article/096b358f11364f89bec96d7956413255
Autor:
Joji Tokita, Aida Vega, Catherine Sinfield, Nidhi Naik, Shivani Rathi, Sharlene Martin, Stephanie Wang, Leonard Amoruso, Azadeh Zabetian, Steven G. Coca, Girish N. Nadkarni, Fergus Fleming, Michael J. Donovan, Robert Fields
Publikováno v:
Journal of Primary Care & Community Health, Vol 13 (2022)
Introduction and Objective: The lack of precision to identify patients with early-stage diabetic kidney disease (DKD) at near-term risk for progressive decline in kidney function results in poor disease management often leading to kidney failure requ
Externí odkaz:
https://doaj.org/article/4fbcffdddb4c47dfa6f536c92243acdd
Autor:
GIRISH N. NADKARNI, DIPTI TAKALE, BRUCE NEAL, KENNETH W. MAHAFFEY, YSHAI YAVIN, MICHAEL K. HANSEN, FERGUS FLEMING, HIDDO L. HEERSPINK, STEVEN COCA
Publikováno v:
Diabetes. 71
Individuals with diabetic kidney disease (DKD) are at risk for progression, heart failure, and death. We assessed the association of KidneyIntelX, a bioprognostictest validated for DKD progression, with a composite time-to-event endpoint of 57% eGFR
Autor:
Michael J. Donovan, Lili Chan, Gohar Mosoyan, Fergus Fleming, Michael W. Kattan, Patricia Connolly, James R. McCullough, Joseph A. Vassalotti, Girish N. Nadkarni, Fadi Salem, Steven G. Coca, Scott M. Damrauer, Barbara Murphy
Publikováno v:
Diabetologia
Aim Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers. Methods
Autor:
Girish N. Nadkarni, Dipti Takale, Bruce Neal, Kenneth W. Mahaffey, Yshai Yavin, Michael K. Hansen, Fergus Fleming, Hiddo J.L. Heerspink, Steven G. Coca
Publikováno v:
Kidney360
KidneyIntelX, a bioprognostic test for assessing risk of CKD progression, risk stratified individuals for kidney, heart failure, and death outcomes in the Canagliflozin Cardiovascular Assessment Study. Individuals scored as high risk seemed to derive
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::959e7f75caeda794cb5ebcfb507ef489
https://europepmc.org/articles/PMC9528375/
https://europepmc.org/articles/PMC9528375/
Autor:
David Lam, Girish N. Nadkarni, Gohar Mosoyan, Bruce Neal, Kenneth W. Mahaffey, Norman Rosenthal, Michael K. Hansen, Hiddo J.L. Heerspink, Fergus Fleming, Steven G. Coca
Publikováno v:
American Journal of Nephrology, 53(1). KARGER
Introduction: KidneyIntelX is a composite risk score, incorporating biomarkers and clinical variables for predicting progression of diabetic kidney disease (DKD). The utility of this score in the context of sodium glucose co-transporter 2 inhibitors
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e350d3d2a669936fce8f61e614c32098
http://hdl.handle.net/10044/1/93754
http://hdl.handle.net/10044/1/93754
Autor:
Michael J. Donovan, Sharon Stapleton, Gohar Mosoyan, Fergus Fleming, Patricia Connolly, Ilya Fligelman, Ya-Chen Tonar
Publikováno v:
Clinical Proteomics
Background The KidneyIntelX™ test applies a machine learning algorithm that incorporates plasma biomarkers and clinical variables to produce a composite risk score to predict a progressive decline in kidney function in patients with type 2 diabetes
Autor:
Patti Connolly, Scott M. Damrauer, Gohar Mosoyan, Fadi Salem, Lili Chan, James R. McCullough, Michael W. Kattan, Girish N. Nadkarni, Fergus Fleming, Barbara Murphy, Joseph A. Vassalotti, Michael J. Donovan, Steven G. Coca
ImportanceDiabetic kidney disease (DKD) is the leading cause of kidney failure in the United States and predicting progression is necessary for improving outcomes.ObjectiveTo develop and validate a machine-learned, prognostic risk score (KidneyIntelX
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::481c46e4148b8e77defed69983047b15
https://doi.org/10.1101/2020.06.01.20119552
https://doi.org/10.1101/2020.06.01.20119552
Autor:
Lili Chan, Girish N. Nadkarni, Barbara Murphy, Scott M. Damrauer, Fergus Fleming, Fadi Salem, Steven G. Coca, Michael J. Donovan
Publikováno v:
Diabetes. 69
The ability to predict rapid kidney function decline (RKFD) in patients with early stages of type 2 diabetic kidney disease (T2DKD) can improve long-term health outcomes through earlier intervention. Our objective was to develop a robust risk score f
Autor:
Chirag R. Parikh, Michael J. Donovan, Barbara Murphy, Divya A. Verghese, Steven G. Coca, Joseph V. Bonventre, John Cijiang He, John Quackenbush, James R. McCullough, Kinsuk Chauhan, Fergus Fleming, Girish N. Nadkarni
IntroductionIndividuals with type 2 diabetes (T2DM) or the APOL1 high-risk genotype (APOL1) are at increased risk of rapid kidney function decline (RKFD) as compared to the general population. Plasma biomarkers representing inflammatory and kidney in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0adb8886011fcfdacc1a41708d5a6618
https://doi.org/10.1101/587774
https://doi.org/10.1101/587774