Zobrazeno 1 - 10
of 39
pro vyhledávání: '"F. Laytimi"'
Autor:
F. Laytimi, W. Nahm
Publikováno v:
Geometriae Dedicata. 215:269-280
Let E be a vector bundle generated by sections and L be an ample line bundle over a smooth projective variety X. We give here a condition for the vanishing of Dolbeault cohomology groups of the form $$H^{p,q}(X,{{\mathcal {S}}}^{\alpha }E\otimes \wed
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
F. Laytimi, Werner Nahm
Publikováno v:
Communications in Algebra. 48:783-791
The main result of this paper is that tensor products of semiample vector bundles over compact complex manifolds are semiample. An easy proof yields the analogous result for direct sums. We...
Autor:
Werner Nahm, F. Laytimi
Publikováno v:
Geometriae Dedicata. 200:77-84
Hartshorne in “Ample vector bundles” proved that E is ample if and only if $${\mathcal O}_{P(E)}(1)$$ is ample. Here we generalize this result to flag manifolds associated to a vector bundle E on a complex projective manifold X: For a partition a
Autor:
D. S. Nagaraj, F. Laytimi
Publikováno v:
Proceedings of Indian National Science Academy, Vol 49, Iss 2 (2018)
In this article we prove a general result on a nef vector bundle $E$ on a projective manifold $X$ of dimension $n$ depending on the vector space $H^{n,n} (X, E). $ It is also shown that $H^{n,n} (X, E)=0$ for an indecomposable nef rank 2 vector bundl
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Proceedings - Mathematical Sciences. 123:479-490
Let E be a vector bundle and L be a line bundle over a smooth projective variety X. In this article, we give a condition for the vanishing of Dolbeault cohomology groups of the form \(H^{p,q}(X,{\mathcal S}^{\alpha}E\otimes \wedge^{\beta} E\otimes L)
In this note we describe the image of $\PP^2$ in $ Gr(2, \CC^{4})$ under a morphism given by a rank two vector bundle on $\PP^2$ with Chern classes $(2,2).$
Comment: To appear in Proc. Indaian. Acd. of Sci
Comment: To appear in Proc. Indaian. Acd. of Sci
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d025313f2dd434af47cd0b9f2ac8ebe0
Autor:
F. Laytimi
Publikováno v:
Manuscripta Mathematica. 134:485-492
In this article we give a vanishing result for Dolbeault cohomology groups \({H^{p,q}(X, S^{\nu}E\otimes L)}\), where ν is a positive integer, E is a vector bundle generated by sections and L is an ample line bundle on a smooth projective variety X.
Autor:
F. Laytimi, D. S. Nagaraj
Publikováno v:
Geometriae Dedicata. 141:87-92
In this paper we give a vanishing result for cohomology groups of symmetric powers of the co-normal bundle of a non-degenerate smooth subvariety X of projective space, then we use this theorem to give a Barth type vanishing theorem.