Zobrazeno 1 - 5
of 5
pro vyhledávání: '"F. B. Weissler"'
Autor:
J. L. Bona, F. B. Weissler
Publikováno v:
Communications in Contemporary Mathematics.
This paper is concerned with complex-valued solutions of the Korteweg–de Vries equation. Interest will be focused upon the initial-value problem with initial data that is periodic in space. Derived here are results of local and global well-posednes
Autor:
F. B. Weissler, Thierry Cazenave
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications
Nonlinear Analysis: Theory, Methods & Applications, 1990, 14 (10), pp.807-836. ⟨10.1016/0362-546X(90)90023-A⟩
Nonlinear Analysis: Theory, Methods & Applications, 1990, 14 (10), pp.807-836. ⟨10.1016/0362-546X(90)90023-A⟩
International audience
Publikováno v:
Archive for Rational Mechanics and Analysis. 94:83-99
Autor:
Michel Chipot, F. B. Weissler
Under some conditions, a blowup result is proved for the solution u of: \[\begin{gathered} u_t = \Delta u - \left| {\nabla u} \right|^q + \left| {u} \right|^{p - 1} u,\quad t > 0,\quad x \in \Omega \hfill \\ u(t,x) = 0,\quad t > 0,\quad x \in \Gamma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66ceac2086502b4c6d0bf4d59efd24e1
Autor:
F. B. Weissler, M. Chipot
Publikováno v:
Mathematical Sciences Research Institute Publications ISBN: 9781461396079
We consider regular solutions of the following elliptic problem, $$\left\{ {\begin{array}{*{20}{l}} {\Delta u - |\nabla u{|^q} + \lambda {u^p} = 0,{\text{ }}x \in \Omega } \\ {u > 0,{\text{ }}x \in \Omega } \\ {u = 0,{\text{ }}x \in \partial \Omega }
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b674943bb48fb6c488274b35c987ab55
https://doi.org/10.1007/978-1-4613-9605-5_13
https://doi.org/10.1007/978-1-4613-9605-5_13