Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Ezequiel Rela"'
Publikováno v:
Journal of Fourier Analysis and Applications. 28
We show some non-standard Poincaré type estimates in the biparametric setting with appropriate weights. We will derive these results using variants from classical estimates exploiting the interplay between maximal functions and fractional integrals.
Publikováno v:
RIUMA. Repositorio Institucional de la Universidad de Málaga
instname
instname
Given a family $${\mathcal {Z}}=\{\Vert \cdot \Vert _{Z_Q}\}$$ Z = { ‖ · ‖ Z Q } of norms or quasi-norms with uniformly bounded triangle inequality constants, where each Q is a cube in $${\mathbb {R}}^n$$ R n , we provide an abstract estimate of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78221ca32dca4a1f874d24c3d72633c0
https://doi.org/10.1007/s13163-022-00427-0
https://doi.org/10.1007/s13163-022-00427-0
We study maximal operators related to bases on the infinite-dimensional torus $\mathbb{T}^\omega$. {For the normalized Haar measure $dx$ on $\mathbb{T}^\omega$ it is known that $M^{\mathcal{R}_0}$, the maximal operator associated with the dyadic basi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ef5e0b965d0150637ea1c284b39e192
http://arxiv.org/abs/2109.04811
http://arxiv.org/abs/2109.04811
Autor:
Ezequiel Rela, Carlos Pérez
Publikováno v:
Transactions of the American Mathematical Society. 372:6087-6133
In this paper we give a geometric condition which ensures that $(q,p)$-Poincaré-Sobolev inequalities are implied from generalized $(1,1)$-Poincaré inequalities related to $L^1$ norms in the context of product spaces. The concept of eccentricity pla
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::076ca4dfbe30211758907e94d30b2a5e
Publikováno v:
Journal of Functional Analysis. 282:109296
We study minimal integrability conditions via Luxemburg-type expressions with respect to generalized oscillations that imply the membership of a given function f to the space BMO. Our method is simple, sharp and flexible enough to be adapted to sever
Autor:
Ezequiel Rela, Ioannis Parissis
Publikováno v:
Indiana University Mathematics Journal. 67:2363-2391
Autor:
Victoria Paternostro, Ezequiel Rela
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We present sharp quantitative weighted norm inequalities for the Hardy- Littlewood maximal function in the context of locally compact abelian groups, obtaining an improved version of the so-called Buckley's theorem. On the way, we prove a precise rev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::379329d98e2108889254da75a0e1bf23
https://msp.org/pjm/2019/299-1/p06.xhtml
https://msp.org/pjm/2019/299-1/p06.xhtml
Autor:
Andrea Olivo, Ezequiel Rela
We provide quantitative weighted estimates for the $$L^p(w)$$ norm of a maximal operator associated to cube skeletons in $${\mathbb {R}}^n$$ . The method of proof differs from the usual in the area of weighted inequalities since there are no covering
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f617394a34a0ee80e87ab1e86cfebeb9
In this note we generalize the definition of Fujii-Wilson condition providing quantitative characterizations of some interesting classes of weights, such as $A_\infty$, $A_\infty^{weak}$ and $C_p$, in terms of BMO type spaces suited to them. We will
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f166362d37070a474c21e64604bfb820